

Multidisciplinary Consulting Engineers PROPOSED STRATEGIC HOUSING DEVELOPMENT 'THE CONNOLLY QUARTER': ENVIRONMENTAL SITE ASSESSMENT AND GENERIC QUANTITATIVE RISK ASSESSMENT

OXLEY HOLDINGS LIMITED

PROJECT NO. B909

OCTOBER 2019

Environmental Site Assessment and Generic Quantitative Risk Assessment

Connolly Station Car Park, Dublin 1

for

Oxley Holdings Limited.

OCSC Job No.: B909	Project Code	Originator	Zone Volume	Level	File Type	Role Type	Number	Status /	Suitability Code	Revision
	D909	ULSU	~~	~~	RP	EINV	0001		50	PUI
Rev	Status	Διιτ	hors	Ch	ecked	Δ	uthorised	4	Тсси	o Dato
Nev.	Status	Aut	1013	Cil	eckeu				1350	ie Date
2	FINAL	A.	ТА		EB		тн		04.	10.19
1	FINAL	Α.	ΤΑ		EB		тн		30.	09.19
0	DRAFT	ATA	/RB		EB		TH		24.	01.19

NOTICE

This document represents the findings from an Environmental Site Assessment (ESA) and Generic Quantitative Risk Assessment (GQRA) conducted at the above referenced site. Best practice was followed at all times and within the limitations stated. This document has been produced by O'Connor Sutton Cronin & Associates for its client Oxley Holdings Limited. It may not be used for

any purpose other than that specified by any other person without the written permission of the authors.

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	. i			
1.	INTRODUCTION	1			
1.1.	Project Contractual Basis & Parties Involved	1			
1.2.	Background Information	1			
1.3.	Proposed Development	2			
1.4.	Previous Reports	4			
1.5.	Project Objectives	5			
1.6.	Methodology and Approach	5			
1.7.	Scope of Works	6			
1.8.	Limitations	7			
2.	ENVIRONMENTAL SITE SETTING	8			
2.1.	Site Location	8			
2.2.	Surrounding Land Use	8			
2.3.	Site History	9			
2.4.	Site Development	9			
2.5.	Site Physical Setting	0			
2.5.1.	Topography1	0			
2.5.2.	Area of Geological Interest 1	0			
2.5.3.	Unconsolidated Geology1	1			
2.5.4.	Geology1	1			
2.5.5.	Aquifers1	2			
2.5.6.	Aquifer Vulnerability	3			
2.5.7.	Groundwater Status	4			
2.5.8.	Groundwater Recharge 1	5			
2.5.9.	Wells & Springs 1	6			
2.5.10). Hydrology1	7			
2.5.11	I. Radon 1	9			
2.5.12	2. Designated Area of Conservation1	9			
2.5.13	3. Nearby Site Investigations 2	0			
2.5.14	4. Summary of the Physical Site Setting2	1			
2.6.	Site Walkover2	2			
2.6.1.	2.6.1. External Infrastructure				
2.6.2.	2.6.2. Oil/Liquid Storage Infrastructure				
2.6.3.	Asbestos	:3			

2.7.	Protected structures	. 23
3	PRELIMINARY CONCEPTUAL SITE MODEL	24
3.1	Risk Assessment Methodology	24
3.2.	Contamination Sources	. 24
3.3.	Outline Conceptual Site Model	. 25
4		07
4. 1 1	Bure Happeld - Breliminary Investigation (2008)	. 21
4.1.	Laboratory Analysis – Soil	. 21 27
4.3	Laboratory Analysis – Coll	. 27 28
4.4.	Groundwater Level Monitoring.	. 28
5.	SITE INVESTIGATION - FINDINGS	. 30
5.1.	Conditions Encountered – Geology	. 30
6.	GENERIC QUANTITATIVE RISK ASSESSMENT	. 31
6.1.	Generic Assessment Criteria	. 31
6.2.	Soil Screening Criteria	. 31
6.3.	Groundwater Screening Criteria	. 32
6.4.	Soil Assessment	. 32
6.4.1	Total Petroleum Hydrocarbons, BTEX and MTBE	. 32
6.4.2	Polycyclic Aromatic Hydrocarbons	. 32
6.4.3	Metals	. 33
6.4.4	PCBs 33	
6.5.	Groundwater Assessment	. 33
6.5.1.	LNAPL & DNAPL Samples	. 34
6.5.2	TPH, BTEX and MTBE	. 34
6.5.3	PAHs 35	
6.5.4	Metals and Indicator Parameters	. 35
6.5.5	Volatile Organic Carbons (VOCs, sVOCs), Phenols and PCBs	. 36
6.5.6	Vapours from Groundwater	. 36
6.6.	Ground Gas Assessment	. 37
6.6.1	Possible Sources	. 38
6.6.2	Possible Receptors	. 39
6.6.3	Possible Pathways	. 39
6.6.4	Ground Gas Risk	. 39
7.	REFINED CONCEPTUAL SITE MODEL (CSM)	. 41
7.1.	Source – Made Ground – from previous site use or original source.	. 41
7.2.	Source – Offsite Sources	. 41

7.3.	Source – On-Site Oil Tanks	. 41
7.4.	Source – Groundwater	. 41
7.5.	Refined CSM	. 42
8	WASTE SOIL CLASSIFICATION	. 44
8.1	Hazardous Waste Assessment	. 44
8.2	Waste Acceptance Criteria Assessment	. 44
8.3	Waste Codes	. 45
8.4	Summary of Waste Classification to Date	. 46
8.5	Asbestos	. 46
8.6	Dig Plans	. 47
8.7	Contractor Requirements regarding Waste Soil & Groundwater Management	. 47
8.7.1	Watching Brief	. 47
8.7.2	Hazardous Cells	. 47
8.7.3	Export from Site	. 47
8.7.4	Monitoring Requirements	. 49
8.7.5	Documentation	. 49
9	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	. 50
9.1	Recommendations	. 51

TABLES

Table 1: Soil Analytical ResultsTable 2: Soil Sample VOCs & VOCs ResultsTable 3: Groundwater Environmental Risk ResultsTable 4: Groundwater Human Health Risk ResultsTable 5: Gas Monitoring ResultsTable 6: Waste Assessment Criteria (WAC)

FIGURES

Figure 1: Previous Site Investigation Locations – Buro Happold 2008

APPENDICES

Appendix A: BH Report – 2008 Appendix B: Nearby Site Investigations Log Appendix C: HazWasteOnline (HWOL) Assessment

EXECUTIVE SUMMARY

The site for assessment is the Connolly station car park, bordered by Seville Place and Oriel Hall to the north; Sheriff Street Lower to the south; Oriel Street Upper to the east; and Connolly Station (Protected Structure) to the west, and is located in Dublin 1. O'Connor Sutton Cronin & Associates Ltd. (OCSC) were appointed by Oxley Holdings Limited (the Client) who is planning to apply for planning permission to re-develop the site for mixed use development (residential and commercial landuse) to include a basement carpark and ancillary site development proposals. There are 2No. protected structures (11No. Arches and an office building) within the site which will be retained and integrated within the new development. A survey carried out in 2018 by Murphy surveys to map existing services and the topography of the site, show there are 11No. arches along Sheriff Street Lower, that 6No. of these arches extend circa 35m into the site, and 5No. arches extend circa 17.5m into the site.

The site is c. 2.88 hectares in area and the historical Ordnance Survey 1888-1913 mapshow that the site was formerly used as a Goods Shed. The 1888-1913 map also shows an oil tank located near the intersection of Oriel Street Upper with Sheriff Street Lower. Current on-site activities of concern are the 2No. railway tracks serving Connolly station depot and the on-site fuel tank located along the boundary with Oriel Street Upper.

Under the supervision of Buro Happold (BH), Glover Site Investigations Ltd. undertook a preliminary site investigation during July to September 2008 that included the progression of 12No. windowless sample boreholes and 7No. cable percussion boreholes (with 3No. rotary core borehole follow on). The original Ground Investigation report was not made available to OCSC at the time of writing this report and therefore the geology and hydrogeology have been inferred from the Buro Happold interpretative report which was made available to OCSC and which have been relied upon as true and accurate. Fourteen (14No.) boreholes were converted to groundwater and/or gas monitoring wells. The environmental monitoring undertaken at the site included the collection of 40No. soil samples and 25No. groundwater samples, which were submitted to the laboratory for analysis. Geology of the site was proven to be a circa 7.2m thick layer of Made Ground overlying a glacial till layer comprising of Gravel embedded among or between a layer of Sandy Gravelly Clay (Dublin Boulder Clay). Rock head was not encountered throughout the site investigation even though the 3No. rotary core boreholes progressed to a maximum depth of 42.3m below ground level. The site investigation carried did not identify any Dense Non-Aqueous Phase Liquid (DNAPL) and/or Light Non-Aqueous Phase Liquid (LNAPL) present beneath the site. Asbestos fibres were not detected in the 35No. soil samples screened for asbestos.

A Generic Quantitative Risk Assessment (GQRA) was completed using the available results to assess the risk to future users (Residential without plant uptake, Public Open Space and Commercial). A number of locations exceeded the Generic Assessment Criteria (GAC) for residential, public open space and commercial receptors for contaminants particularly lead, and PAHs (residential and commercial).

The Buro Happold interpretative report contains 40No. analyses of samples taken from 17No. locations during site investigations. Of those 17No. locations, 2No. locations are significantly outside the site. The list of parameters analysed were not consistent across the 40No. samples. Of these 40No. samples, 15No. samples from 10No. locations within the site were subjected to leaching tests. Again the list of leachate parameters tested for were not consistent across the 15No. samples.

The number of sampling locations, consistency of analysed parameters, and depth of sampling are such that any assessment for soil waste management based on them should only be considered indicative. Consequently the assessment made on this data is considered not to be

fully representative of the site. Further site investigations and sample analyses will be required to provide a robust assessment in line with industry standard operating procedures.

The waste soil assessment made on this limited data set, indicates that the upper part of the soil is

- Potentially predominantly non-hazardous, with a hotspot hazardous nature resultant of lead and copper content. There is not sufficient data to exclude the potential for TPH hotspots, however it is considered probably unlikely.
- Probably unlikely to be acceptable at an inert soil disposal or recovery facility. It is expected that excepting the potential for heavy metal hotspots the soil would generally be acceptable at a non-hazardous landfill.

All soil samples analysed were from shallow depths with the deepest sample being from 6.5mbGL. Development plans show that the current site elevation ranges between 7.5-8.0mOD; ground floor of the development will be at 1mOD which is the same level as the Sherriff Street Lower. The basement floor level will be -2.585mOD and its footprint is shown in Figure 1.3. The proposed plans indicate that there will be a 10m dig depth across certain sections of the site, hence the removal of all Made Ground.

During the basement construction, and after the Made Ground has been excavated, it is possible that water ingress will occur as the dig progresses into the glacial till layer; therefore, a discharge licence will likely be required to enable discharge of water to sewer to keep the excavation dry. Excavation and disposal will also likely be used as part of the design measures and will remove a large volume of contaminated material including the more shallow material. However, the final remedial strategy will only be determined once the deeper soils which will be in contact with the basement, have been fully characterised, and further information on the hydrogeological regime and geological profile has been evaluated.

It is recommended that:

- Additional site investigations and monitoring is completed for waste classification purposes to classify the soils beneath the site which will be excavated as part of the development;
- Sampling of the deeper soils which are within the glacial till and within which the basement will be founded in order to assess if any risk is present from this layer from a human health or environmental perspective;
- Additional gas and groundwater monitoring should be carried out; and
- Decommissioning of the oil tank currently present on-site prior to re-development of the site.

1. INTRODUCTION

1.1. Project Contractual Basis & Parties Involved

This report has been prepared by O'Connor Sutton Cronin & Associates Ltd. (OCSC) at the request of their Client Oxley Holdings Limited. The project brief and terms were set out in OCSC proposal dated 6th July 2018.

The site for assessment is an area incorporating Connolly station car park and some warehouse buildings located to the east side of the intersection of Oriel Street Upper with Seville Place, Dublin 1. It is proposed that the site will be developed for mixed use incorporating commercial and residential use. The Regulating Authority for the site is Dublin City Council (DCC).

The report was completed by Ahmed Thamer, Environmental Engineer with OCSC. Assistance was provided by Ross Begg, Graduate Environmental Consultant with OCSC. The report was reviewed by Eleanor Burke who is the OCSC Environmental Division Manager. The Project Director is Tony Horan CEng, FIEI, Chartered Engineer and Managing Director of OCSC.

Other documents relevant to this report are:

 Geotechnical & Geo-environmental interpretative report: Contaminated Land Generic Quantitative Risk Assessment - A report by Buro Happold Limited for Córas Iompair Éireann (CIE) (2008).

1.2. Background Information

The site for assessment is bounded by Seville Place and Oriel Hall to the north; Sheriff Street Lower to the south; Oriel Street Upper to the east; and Connolly Station (Protected Structure) to the west, Dublin 1 (see Figure 1.1). The site currently comprises of the existing CIE car park, CIE Group buildings, Rolling stock maintenance shed, and part of existing railway lines / sidings.

1

Figure 1.1: Site Location and approximate site boundary

Figure 1.2: Aerial Image of the site (Source: GoogleMaps)

1.3. Proposed Development

At the time of writing this report, OCSC understand that Oxley Holdings Ltd. intend to apply to An Bord Pleanála for permission for a Strategic Housing Development at this site (c. 2.88 hectares) to the rear of Connolly Station, Sherriff Street Lower, Dublin 1, Eircode D01 V6V6.

The development will consist of;

- the demolition of 4 no. structures with a combined gross floor area of 3,028sq.m;
- the construction of 741 no. Build to Rent (BTR) residential units in 8 no. apartment blocks ranging in height from 4 storeys to 23 storeys with lower height buildings located adjacent to the northeast and east site boundaries, with a cumulative gross floor area of 68,535sq.m comprising;
- Block B1 (maximum building height 54.917m, total gross internal floor area 11,260sq.m, Apartment Mix: Studio: 25, 1-bed: 37, 2-bed: 51);
- Block B2 (maximum building height 54.917m, total gross internal floor area 10,831sq.m, Apartment Mix: Studio: 20, 1-bed: 35, 2-bed: 51);
- Block B3 (maximum building height 51.767m, total gross internal floor area 9,766sq.m, Apartment Mix: Studio: 22, 1-bed: 60, 2-bed: 27, 3-Bed: 1);
- Block C1 (maximum building height 79,450m, total gross internal floor area 12,705sq.m, Apartment Mix: Studio: 84, 1-bed: 40, 2-bed: 41);
- Block C2 (maximum building height 39,615 m, total gross internal floor area 4,890 sq.m, Apartment Mix: Studio: 9, 1-bed: 33, 2-bed: 3, 3-Bed: 4);
- Block C3 (maximum building height 39,650 m, total gross internal floor area 6,775sq.m, Apartment Mix: Studio: 40, 1-bed: 18, 2-bed: 23);
- Block D1 (maximum building height 53,392 m, total gross internal floor area 8,418 sq.m, Apartment Mix: Studio: 10, 1-bed: 25, 2-bed: 44, 3-Bed: 1);
- Block D2 (maximum building height 30,950 m, total gross internal floor area 3,890 sq.m, Apartment Mix: Studio: 18, 1-bed: 8, 2-bed: 11);
- residential support amenities including 1 no. gyms, a resident's lounge, work areas, meeting rooms, dining rooms, recreational areas with a combined GFA of 1,444 sq.m;

- change of use from club house to pedestrian passageway of the existing vault (137sq.m GFA) fronting Seville Place, a Protected Structure (RPS No. 130);
- a basement of 7,253.4 sq.m with vehicular access from Oriel Street Upper incorporating residents' car parking (58 no. spaces), residents cycle parking (640 no. spaces) 7 no. plant rooms (combined 2,228sq.m), waste management facilities (393 sq.m)
- 766 no. covered cycle parking spaces for residents and visitors, concierge office (233 sq.m) and waste management facilities (126 sq.m);
- 'other uses' including 10 no. units providing retail, commercial, and community use with a combined GFA of 3,142 sq.m;
- A total of 18,562 sq.m of hard and soft landscaping comprising both public, communal and private open space located throughout the development;
- A service and emergency vehicle only access ramp from the Oriel Street Upper site entrance to serve CIE's transport needs at Connolly Station;
- Enabling works of a non-material nature to safeguard the existing vaults (Protected Structures RPS No. 130) that form part of the subject site fronting Sherriff Street Lower, Oriel Street Upper, and Seville Place during the construction phase;
- All associated ancillary development works including drainage, 6 no. electricity substations, pedestrian access; and
- Works to the Masonry wall fronting Oriel Street and the Vaults fronting Seville Place (both a Protected Structure) consisting of the creation of a new vehicular and pedestrian entrance.

The site is currently higher than the surrounding Sheriff Street Lower by about 7m and it is proposed that the ground floor of the development will be at approximately the same level as the street level at +1.850mOD with the finished floor level of the basement at circa -2.585mOD. The basement will occupy approximately 30% of the site footprint, see section 2.21. The basement and the buildings will be formed and supported using a secant piled wall and piles of 900mm diameter which will extend to the top of rock which is located at depth (greater than 41metres below ground level). It also planned that Irish Rail will divert the 2No. railway tracks currently within the site boundary and move them further north prior to the redevelopment of the site. The overall development layout plan is still under discussion/ study by the design team.

Figure 1.3: Basement footprint proposed

1.4. Previous Reports

Buro Happold (BH) undertook a Phase II site investigation in 2008 which included the installation of a number of intrusive site investigation locations. Key conclusions from the report included:

- The site's proven geology is Made Ground. This Made Ground compromises of a
 mixture of clay, sand and gravel containing cobbles and occasional boulders along with
 pieces of glass, brick, sea shells, ceramics, timber, rubber, concrete, ash and pottery.
 This made ground is located over a layer of glacial till which is composed of sandy
 GRAVEL embedded among or between a layer of sandy gravelly CLAY. There is a
 discontinuous layer of sandy SILT with sea shells in the southern end of the site
 towards Sherriff Street Lower, bedrock was not encountered;
- Significant ground gas concentrations of Carbon Dioxide (CO₂) and Methane (CH₄) were recorded across the site, albeit at low flow rates (<1 l/h). In accordance to BS8485:2015, the site would be categorized into 'Characteristic Situation 2' (CS2);
- Significant Dense Non-Aqueous Phase Liquid (DNAPL) or Light Non-Aqueous Phase Liquid (LNAPL) contamination was not encountered during the site investigation. Hydrocarbon odours were encountered in WS11 at a depth of 2mbGL, however no visual/olfactory evidence of contamination was recorded at any other exploratory hole locations;
- Metals concentration in the soils across the site were elevated, particularly Lead, being above the GAC limit for residential without plant uptake for about 60% of the soil samples analysed;
- No asbestos was detected in the soil samples taken from all exploratory hole locations. An asbestos survey had not been undertaken to investigate the potential for asbestos to be present in the above ground structures on-site;

- Groundwater was observed to be within the GRAVEL layer of the glacial till and the water table was found to be relatively flat and at circa 0mOD;
- Laboratory analysis of the groundwater beneath the site found it to be impacted by petroleum hydrocarbons and PAHs. In addition, chloride, sulphate and ammoniacal nitrogen concentrations were also relatively elevated;
- The report concluded that the significant amount of soils to be excavated as part of basement formation, the incorporation of gas protection measures according to 'CS2' of BS8485 and the implementation of an Environmental Management Plan will reduce the risk to construction workers and future site users to an 'acceptable' low risk;
- The report also recommended further investigation and monitoring of groundwater regime before and after development to provide evidence in support of natural attenuation occurring on site.

1.5. Project Objectives

The overall project objectives include:

- Provide environmental information on the site focusing on its environmental setting and past site activities including a review of all up to date mapping ;
- Assess any obvious environmental liabilities;
- Assess current soil and groundwater quality at the project site in terms of contamination and to inform the Client of any risk posed by contamination if present in the context of the proposed future use commercial and residential use;
- Formulate initial Conceptual Site model;
- Undertake a generic quantitative risk assessment (GQRA) using up to date Generic Assessment Criteria (GAC); and
- Make recommendations for any further assessments/site investigations, if required.

1.6. Methodology and Approach

The methodology and approach for the proposed work will follow:

- BS 10175:2011+A1:2013, Investigation of potentially contaminated sites, Code of Practice;
- EPA, 2015, Waste Classification, List of Waste & Determining if Waste is Hazardous or Non-hazardous;
- EPA 2013, Guidance on the Management of Contaminated Land and Groundwater at EPA Licensed Sites;
- EPA 2007, Code of Practice, Environmental Risk Assessment for Unregulated Waste Disposal Sites;
- EA, 2015, Guidance on the classification and assessment of waste, Technical Guidance WM3;
- EA, 2004, Model Procedures for the Management of Land Contamination (CLR11);
- The LQM/CIEH S4ULs for Human Health Risk Assessment (2015);
- SP1010 Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination CL:AIRE (2014);
- EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment (2010);

- 2010 European Communities Environmental Objectives (Groundwater) Regulations (Statutory Instrument No. 9 of 2010);
- 2016 European Communities Environmental Objectives (Groundwater) (Amendment) Regulations (Statutory Instrument No. 366 of 2016);
- EPA (2003) Towards Setting Guideline Values for the Protection of Groundwater in Ireland (2003);
- Environmental Liability Regulations (S.I. 547 of 2008);
- Environment Agency (2000) Guidance on the Assessment and Monitoring of Natural Attenuation of Contaminants in Groundwater;
- Environment Agency (2004) Model Procedures for the Management of Land Contamination. Contaminated Land Report 11;
- FRTR (2009) Remediation Technologies Screening Matrix and Reference Guide Version 4.0; and
- US EPA (2004) How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers, EPA 510-R-04-002.
- List of Waste & Determining if Waste is Hazardous or Non-Hazardous (EPA, 2015) and European Waste Catalogue (Commission Decision 2014/955/EU);
- European Waste Framework Directive (2008/98/EC);
- Guidance on the classification and assessment of waste, Technical Guidance WM3 v1.1 (EA et al, 2018);
- S.I. 233 of 2015 EU (Properties of Waste which Render it Hazardous) Regulation;
- Landfill Directive 1999/31/EC (2003/33/EC);
- Waste Management Act 1996 (as amended);
- S.I. 126/2011 European Community (Waste Directive) Regulations;
- Classification, Labelling & Packaging Regulations EC/1272/2008;

The proposed end-use defines the level of environmental risk assessment required and in this instance, the development will consist of the redevelopment of the site to provide a mixed commercial, residential, community and leisure development.

1.7. Scope of Works

To meet the project objectives the following scope of works were completed:

- Undertake and present a historical site and area review, primarily referring to old Ordnance Survey Maps but utilising other sources as appropriate and readily available including previous site investigations and data available;
- Review third party interpretative report and identify if any gap(s) exists;
- Present a discussion of the current site status and key environmental influences around the site;
- Present a discussion of the general soil and groundwater conditions within the topographical and area context;
- Evaluate the results spatially to determine whether any subsurface pathways exists at the site and evaluate the distribution of contamination encountered, if any;

• Evaluate the results against Generic Quantitative Risk Assessment (GQRA) criteria as a first screen to evaluate if the concentrations on site present a risk to future site users (human health) or the environment; and

Based on the results of the above assessment the requirement for further detailed site investigation or more site specific Detailed Quantitative Risk Assessment (DQRA) will be discussed.

1.8. Limitations

This Environmental Site Assessment (ESA) and Generic Quantitative Risk Assessment Report (GQRA) has been prepared for the sole use of Oxley Holdings Limited ("the Client"). No other warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by OCSC. This Report is confidential and may not be disclosed by the Client nor relied upon by any other party without the prior and express written agreement of OCSC.

This assessment is based on a review of available historical information, environmental records, consultations, relevant information and reports from third parties. All information received has been taken in good faith as being true and representative.

This report has been prepared in line with best industry standards. The methodology adopted and the sources of information used by OCSC in providing its services are outlined in this Report. The assessment undertaken by OCSC is based on the Buro Happold Report (2008). The scope of this Report and the services are accordingly factually limited by these circumstances.

OCSC disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to OCSC's attention after the date of the Report.

The conclusions presented in this report represent OCSC's best professional judgement based on review of the relevant information available at the time of writing. The opinions and conclusions presented are valid only to the extent that the information provided was accurate and complete.

2. ENVIRONMENTAL SITE SETTING

2.1. Site Location

The site is located within the Connolly Station carpark which is near the International Financial Services Centre (IFSC) in the Dublin Docklands. The site and surrounding area has an industrial past and has a number of known contamination issues. The site is located between Seville Place and Sheriff Street Lower. In 2008, Córas Iompair Éireann (CIÉ), initiated a study to investigate the potential to redevelop Connolly Station car park to include retail, residential and commercial properties together with community green space and a transport interchange. It was also proposed to retain the existing railway arches.

The regional site location is illustrated on Figure 2.1.

Figure 2.1 Regional Site Location

The site is located about 340m north of the of the River Liffey and 215m to the West of the Royal Canal. It is 2.88 hectares (ha) in area. The Ordnance Survey of Ireland (OSI) Easting Northing Coordinates for the site are 716812, 735003.

2.2. Surrounding Land Use

The site's surrounding area is urban in nature. The site is bordered by Seville Place and Oriel Hall to the north; Sheriff Street Lower to the south; Oriel Street Upper to the east; and Connolly Station (Protected Structure) to the west, Dublin 1. Refer to Figure 1.2 in Section 1 for an aerial photograph of the site. The adjacent land uses are listed in Table 2.1.

	•
BOUNDARY	LAND USE
North	Residential properties and the Royal Canal.
South	Custom House Harbour apartments building, and the Harbourmaster place mixed used development further South.
East	Residential properties, St Laurence O'Toole's Catholic Church and the Royal Canal further East.
West	Connolly station railway lines, platforms and building, residential buildings and a Top Service station, Fáilte Ireland Headquarters along Amiens Street.

2.3. Site History

An understanding of the site history was gained by undertaking a review of the following primary sources including:

- a review of available extracts of historical Ordnance Survey of Ireland (OSI) maps;
- National Monuments Service (NMS) viewer;
- a review of information held by the Environmental Protection Agency (EPA) EnVision online Mapping;
- aerial images available of the site (OSI, Google and Bing);
- the Geological Survey of Ireland (GSI) online map tool;
- the National Parks and Wildlife Service online map tool; and
- Information provided by the client including:
 - Geotechnical & Geoenvironmental Interpretative Report, 023956 Connolly Station, Dublin – Burro Happold (Revision 01, October 2008)

2.4. Site Development

Aerial images of the site from 1995 and 2000 show the site layout as it is today. Currently, the site consists of a CIE car park, CIE Group buildings, Rolling stock maintenance shed, and part of existing railway lines / sidings.

The 6" historical map (1837-1842) shows the site to be occupied by agricultural lands/pastures.

Development of the area surrounding the site continued throughout the 1800s and then around 1847 the Drogheda Railway Terminus was built (known today as 'Connolly Station'). Railway lines, goods sheds, warehouses and an oil tank shown occupying the site on the 25" OSI maps 1888-1913. Around the early 1980's the site was developed as a car park for the Connolly station. The area surrounding the site is known for its industrial heritage such as vinegar works, coal yards, tobacco factories, railway depots, chemical works, timber yards, cattle yards and goods sheds'.

Figure 2.2. Approximate Location of the proposed development on 1837-1842 6 Inch OS Map (Source: Ordnance Survey Ireland)

Figure 2.3. Approximate Location of the proposed development on 1888-1913 25 Inch OS Map (Source: Ordnance Survey Ireland)

2.5. Site Physical Setting

Information regarding the site topography, hydrology, geology, hydrogeology and ecology of the area has been obtained from records held by the Geological Survey of Ireland (GSI), Environmental Protection Agency (EPA) Envision online mapping tool, Ordnance Survey of Ireland (OSI), Water Framework Directive Maps and National Parks and Wildlife Service (NPWS) databases.

2.5.1.Topography

The regional topography of the area is urban and generally flat but the site itself can be described as an area of raised land running alongside the elevated railway tracks . The site generally slopes north-south from an average of 8mOD at the Seville Place boundary to 6mOD at the centre of the site, before rising again to 8mOD in the southern portion of the site bordering Sheriff Street Lower. The site also slopes west-east from 8mOD bordering Connolly Station to 2.5mOD at the Oriel Street Upper boundary.

It is also important to note, the southern boundary with Sheriff Street Lower drops suddenly from 8mOD to 1mOD at the road surface below. In the north-eastern portion of the site, the elevation of the car park drops significantly at the boundary with Oriel Hall from 6.5mOD to 1mOD at the road surface. Similarly, at the northern boundary with Seville Place, the elevation at boundary wall drops from 8mOD to 1mOD at the road surface below.

2.5.2. Area of Geological Interest

The Geological Survey of Ireland (GSI) online mapping service was consulted regarding areas of geological interest in the area of the site. The nearest area of geological heritage is the 'General Post Office (GPO)' on O'Connell Street which is located approximately 1.1km west of the site. The reason for this listing is 'The sole use of three classic Irish marble types is a good example of building stone use'. Given the distance to the building and its nature it is considered to be outside of the zone of influence of the proposed development.

2.5.3.Unconsolidated Geology

Teagasc Topsoils and Subsoils

The topsoil and subsoil beneath the site has been classified into one main category, made ground. This is as expected given the urban nature of the area.

The site surrounds also consists of made ground. Refer to Figure 2.4 from the GSI online mapping for further information.

Figure 2.4 Teagasc Topsoils and Subsoils

2.5.4.Geology

The bedrock beneath the site and the greater surrounding area consists of Dinantian Upper Impure Limestones (DUIL) which is described as 'Dark grey to black Limestone and Shale'. This is colloquially known as Calp Limestone and is known to contain areas of mudstone and occasionally pyrites. The local geology mapped by the GSI is illustrated on Figure 2.5.

Figure 2.5 Geology

2.5.5.Aquifers

The GSI provides a methodology for aquifer classification based on resource value (Regionally Important, Locally Important and Poor) and vulnerability (Extreme, High, Moderate or Low). Resource value refers to the scale and production potential of the aquifer whilst vulnerability refers to the ease with which groundwater may be contaminated by human activities (vulnerability classification primarily based on the permeability and thickness of subsoils). The aquifer beneath the site is a bedrock aquifer which is described as a Locally Important aquifer (LI) which is moderately productive in local zones only (Refer to Figure 2.6). The aquifer covers an area of 1309km² and covers the City of Dublin and surrounding area. There is no gravel aquifer mapped in Dublin City Centre however there are known gravel deposits in the area particularly in the docklands. These have not been designated as aquifers given their urban and coastal nature which make them generally unsuitable for potable use. They are however likely to contain significant volumes of water.

The limestone is part of the Dublin Urban Ground Water Body (GWB) which is described as poorly productive. The GWB covers an area of 837km² over the Dublin area and towards Kildare. The GSI Summary Characteristics of the Dublin GWB identify that the permeability of these rock units are likely to be low $(1-10m^2/d)$.

Figure 2.6 Aquifers

2.5.6. Aquifer Vulnerability

The groundwater vulnerability beneath the proposed site is Low; refer to Figure 2.7 (GSI, 2016). Vulnerability ratings are related to a function of overburden thickness and permeability which might offer a degree of protection and/or attenuation to the underlying aquifer from surface activities and pollution. Bedrock was not encountered in the previous site investigation even though 3No. Rotary core boreholes extended to a depth between 39.5 and 42.3mbGL; which suggest a thick layer of overburden exists below the site.

Figure 2.7 Aquifer Vulnerability

There were no karst features identified adjacent to the site.

2.5.7. Groundwater Status

An assessment carried out under the Water Framework Directive 2010-2015 groundwater body (EPA, 2018) has concluded that the groundwater within the bedrock aquifer is presently of "Good status". The objective is to protect the "Good status" by recognizing that the quality of the groundwater is at risk due to point and diffuse sources of pollution.

Figure 2.8 WFD Status 2010-2015

The Groundwater Bodies risk status is 'Not At Risk' assigned to the Dublin bedrock aquifer (see Figure 2.9).

Figure 2.9 Ground Waterbodies Risk Status

2.5.8. Groundwater Recharge

Diffuse recharge generally occurs via rainfall percolating through the subsoil being higher in areas where subsoil is thinner and/or more permeable. The proportion of the effective rainfall that recharges the aquifer is largely determined by the thickness and permeability of the soil and subsoil, and by the slope. On this site only a small percentage of recharge will occur due to a significant percentage of hardstanding and building coverage on site.

The GSI's groundwater recharge model parameters for the site are summarised in Table 2.2. Figure 2.10 contains a drawing from the GSI indicating the recharge zone.

Groundwater Recharge Parameters				
Average Recharge (mm/yr):	60			
Hydrogeological Setting:	4m			
Hydrogeological Setting Description:	Made ground			
Soil Drainage:	MADE			
Subsoil Type:	Made			
Subsoil Description:	Made ground			
Subsoil Permeability:	L			
Subsoil Permeability Description:	Low			
GW Vulnerability:	L			
GW Vulnerability Description:	Low			
Aquifer Category:	LI			

Table 2.2 GSI Groundwater Recharge Parameters

Groundwater Recharge Parameters				
Aquifer Category Description:	Locally Important Aquifer - Bedrock which is Moderately Productive only in Local Zones			
Recharge Coefficient (%):	20			
Maximum Recharge Capacity (mm/yr):	200			
Effective Rainfall (mm/yr):	302			

Figure 2.10 Groundwater Recharge

2.5.9.Wells & Springs

A search of the GSI groundwater well database was conducted to identify registered wells in the surrounding area. None of the wells identified had any drilling details, or depth to water. The 2No. wells identified to the East of the site are noted to be 50mm in diameter and hence are assumed to be an SI Geotechnical/Groundwater monitoring wells. The well (GSI Name: 2923SEW012) which is located around Parnell Street to the west of the site on located at E315950, N235050, was drilled in 1899 and has a total depth of 137mbGL. It was also noted to have a yield of 163.6m³/day and a depth to rock of 9.1mbGL. Mapped wells and springs in the general vicinity of the site identified by the GSI are illustrated on Figure 2.11.

Figure 2.11 Wells and Springs

The GSI (1999) also provides a framework for the protection of groundwater source zones (e.g. areas of contribution to water supply bores). There are no reported source protection zones (SPZs) within a 2km radius of the proposed site.

Based on a review of available information local groundwater flow is expected to the South/Southeast.

2.5.10. Hydrology

There are no surface water features within the site.

The largest adjacent surface water feature, the River Liffey, is a transitional water body given it is tidally influenced. Based on the most recent water quality information 2010-2015 (EPA, 2018) the water body south of the site, Liffey Estuary Lower, has been designated as unpolluted, however further upstream it has been designated as eutrophic (refer to Figure 2.12).

Under the Water Framework Directive the River Liffey has been designated as 'Good' status for transitional waters (Figure 2.14) whereas the Liffey Estuary Upper has been designated as 'Moderate'. Additionally, both the Liffey Estuaries Lower and Upper have been identified as 'at risk of not achieving good Status' under the WFD Risk Score (Figure 2.14).

The North Dock Harbour is also located immediately to the south of the site linked with Georges Dock which is in turn connected to the River Liffey. Both docks are sealed from the Liffey by a historical lock located to the north of Scherzers Bridge on Custom House Quay.

Figure 2.12 Surface Water Quality (EPA, 2018)

Figure 2.13 WFD Status (EPA, 2018)

Figure 2.14 WFD Risk Scores (EPA, 2018)

2.5.11. Radon

According to the EPA (now incorporating the Radiological Protection Institute of Ireland) between one and five per cent of the homes in this 10km grid square are estimated to be above the Reference Level of 200 Bq/m³. The Building Regulations in Ireland only require radon protection to be installed in areas of high radon risk (10% to 30% of homes exceed reference level). Refer to Figure 2.15.

Figure 2.15 Radon Map (EPA, 2018)

2.5.12. Designated Area of Conservation

The nearest designated area of conservation is the South Dublin Bay and River Tolka Special Area of Conservation (SAC) Site Code 000210 and Special Protection Area (SPA) Site code 004024 located approximately 1.5km east of the site (NPWS, 2018).

Figure 2.16 NPWS Designated Area (Source: NPWS MapViewer)

2.5.13. Nearby Site Investigations

The site is located in a well investigated area in Dublin City of which the Geological Survey of Ireland (GSI) have compiled a database from site investigations previously carried out in Ireland. Figure 2.17 identifies the site investigation locations with the vicinity of the site. For the Connolly station site, the most relevant GSI reports for nearby investigations include R856, R2489, and R3464 which are attached in the appendices. A slight discrepancy exists between the findings of the intrusive works undertaken at the site and the nearby site investigations completed. The nearby site investigations show that the geology consists of Made Ground overlaying Gravels which are underlain by Boulder Clay. Whereas, the Buro Happold report states that the site's geology is comprised of Made Ground underlain by a layer of glacial tills (gravels embedded among or between the Boulder Clay layer). This discrepancy exists due to the fact that the site investigation boreholes carried out in 2008 by Buro Happold extended to deeper depths than the other nearby boreholes, hence, the nearby boreholes didn't encounter the deeper gravel layers encountered on the Connolly Station car park site.

The nearby site investigation undertaken just to the south-west of the site consisted of 2No. cable percussion boreholes which were carried out prior to the development of the apartment block on the intersection of Oriel Street Upper with Sheriff Street Lower. These 2No. boreholes had a maximum depth of 5mbGL and indicated that the site was underlain by a layer of 'Made Ground Fill' of 1m thickness overlaying a 1.2m layer of 'Soft Black very Silty CLAY' which is lying over a 2.8m thick layer of 'Fine to Coarse sandy GRAVEL'. Bedrock was not encountered during these works.

Site investigation records from the Custom House Harbour apartment blocks, located to the south of the site, show that the site was underlain by about 2.5m thick layer of 'Made Ground FILL' followed by a layer 3.5m thick of 'Fine to Coarse Sandy GRAVEL' which is overlying a 'very hard to stiff black gravelly silty CLAY' layer which is about 3.5m thick. The site investigation at the Custom House Harbour site consisted of 6No. cable percussion boreholes advancing to a maximum depth of 10mbGL; bedrock was not encountered during the works.

Finally, a site investigation consisting of 6No. cable percussion boreholes within the Connolly Station development which might have been from the LUAS station investigation, shows the site to be underlain by an average of 2m thick layer of 'Made Ground' over a layer of 'Fine to Coarse sandy GRAVEL' which had an average of 10m thickness. In 4No. out of 6No. boreholes, a layer of 'Fine to Coarse SAND' was encountered sandwiched between the GRAVEL layers. The 'SAND' layer had an average thickness of 3m when it was encountered. Bedrock was not encountered during the works.

2.5.14. Summary of the Physical Site Setting

Summary of the site physical setting are outlined in Table 2.3.

FEATURE	DETAILS & COMMENTS
Topography	Urban
Geology	Topsoil and Subsoil:
	Made ground.
	Solid Geology:
	According to GSI data, the bedrock geology beneath the site is underlain by Dinantian Upper Impure Limestones.
Hydrogeology	Aquifer Classification:
	The bedrock aquifer underlying the site is classified as a Locally Important Aquifer (LI) which is moderately productive in local zones only.
	Vulnerability & Recharge:
	The vulnerability has been classified as Low.
	The average recharge has been modelled at 60 mm/year.
	Groundwater Flow:
	The regional groundwater flow direction can be expected to be to the southeast/ east.

	Well Search:
	There were no Source Protection Zones identified and therefore the assumption is that there are no public supply wells within a 2km zone.
	A number of probable geotechnical site investigation boreholes were recorded within the general vicinity of the site, near IFSC and Spencer Dock, however none of these provided any detail on depth to bedrock or water level. GSI maps also identify a high yielding borehole located on Parnell Street just 900m to the west of the site; the borehole was drilled in 1899 and its usage is not known.
Hydrology	Surface Water Courses:
	There are no surface water features on site.
	The nearest surface water features are the River Liffey located south of the site, the Royal Canal located to the east of the site and north, and Georges Docks immediately to the south.
Designated sites	The nearest designated site is the South Dublin Bay and Tolka River SAC (Site Code 000210) and SPA (Site Code 004024) located approximately 1.5km east of the site.

2.6. Site Walkover

A site walkover have not been carried out by OCSC at the time of writing this report as the purpose of this report is to revise the previous work completed up to current standards.

2.6.1.External Infrastructure

The majority of the site is under hardstanding which comprised of a tarmac covered surface car park. The site is bounded by an elevated stone wall with an access gate from Sheriff Street Lower.

2.6.2.Oil/Liquid Storage Infrastructure

There are visible oil storage tanks infrastructure on site, a minimum of 1 No. oil tanks can be seen currently on site from Google Earth images, the location of the historical oil tank is also shown in Figure 2.18 below. The latest 2018 Google maps aerial viewer shows the oil tank to be still present. It is recommended that the oil tank is to be decommissioned prior to re-development of the site.

Figure 2.18 Potential areas of concern/contamination (Source: GoogleEarth)

2.6.3.Asbestos

An asbestos survey was not available for review and should be completed prior to the commencement of any demolition works.

2.7. Protected structures

National Monuments Service (NMS) maps show that there are 2No. protected structures within the site boundary as shown in Figure 2.19 below; below are the descriptions:

• Arches

The 11No. railway arches consisting of Calp limestone walls and piers built in 1840 are categorised as an Architectural Technical structure of special interest enhancing the industrial character of the streetscape as part of the Connolly Station. A recent survey showed that 6No. of the arches extend circa 35m into the site and 5No. extend circa 17.5m into the site.

• Office

The former Great Northern Railways office located between Sheriff Street Upper and Oriel Street Lower built in 1915 is deemed as an Architectural structure of special interest due to use of classical devices such as stone cornicing and symmetry.

Figure 2.19 Protected structures within and surrounding site's boundary

3. PRELIMINARY CONCEPTUAL SITE MODEL

3.1. Risk Assessment Methodology

Currently there is no specific legislation addressing contaminated land in Ireland and therefore this report has been prepared considering the most relevant guidance published by the Irish Environmental Protection Agency (EPA) and the UK Environment Agency (EA) guidance as referenced in Section 1.6. Both authorities advocate a risk-based assessment when dealing with contaminated land and groundwater issues and this is considered best practice as well as being a requirement under the Environmental Liability Regulations (S.I. 547 of 2008).

A critical element of the risk assessment process is the establishment of a Conceptual Site Model (CSM) for the site. A CSM describes the potential sources of contamination at a site, the migration pathways it may follow and the receptors it could impact. If a complete source-pathway-receptor scenario exists then there is a potential pollutant linkage that needs to be characterised and assessed (via formal risk assessment). All three elements need to be present for a viable risk to exist (e.g. if a source and receptor exist but no pathway is present then there is no pollutant linkage and hence no risk). The CSM is updated and refined as more information becomes available.

3.2. Contamination Sources

Following the Phase I review the areas of concern which are considered as potential pollutant sources are summarised in Table 3.1:

AREA/ ASPECT	DETAILS & COMMENTS	SIZE/ MAGNITUDE	POTENTIAL FUTURE RISK
Made Ground	Any contaminants within the material used to fill the site historically.	Unknown	Low
Previous site use – Goods shed.	Any contaminants within the material associated with the past site use.	Small - medium	Low
Present site use – railway tracks and oil tanks.	There are 2No. railway tracks within the site boundary and there is a possibility that contaminants have seeped through the ballast material below the tracks and infiltrated into the Made Ground and subsequently to the gravels. There is also the potential for spills from oil tanks to have occurred.	Medium- large	Low
Offsite contaminant sources	Activities associated with offsite sources, in particular coal yards, bonded stores, goods shed, railway lines and depots in the vicinity of the site.	Medium- large	Low

Table 3.1 Potential Areas of Concern

NOTE: future risk assumes design/remedial measures are completed prior to development.

3.3. Outline Conceptual Site Model

Based on the preliminary assessment, several possible pollution linkages were identified for the site (Refer Table 3.2).

Table 3.2 Preliminary Conceptual Site Model

SOURCE	PATHWAY	RECEPTOR	POTENTIAL POLLUTANT LINKAGE Y/N
En	vironmental		
Migration of contamination from adjacent properties such as historic timber treatment, coal yards and in particular the adjacent railway lines and depots.	Migration of		Y
Potential historical on-site spills - Potential contamination within shallow subsoil materials from historic activities	contaminants from made ground and	Groundwater in the Gravel and/or bedrock aquifer	Y
(railway lines, oil tanks and associated maintenance yards) and from unknown source of material which could have been contaminated during original filling.	rial which could have filling.		Y
Potential contamination within groundwater	Migration of contaminants in the subsoil & bedrock aquifer and/or also via discharge to sewer	Potential surface watercourses (River Liffey) via groundwater baseflow and sewers if discharge to sewer occur during basement excavation.	Y
Hu	ıman Health		
Migration of contamination from adjacent properties such as coal yards, timber yards, and in particular the adjacent railway lines and depots.	Vapour	Onsite Residents	v
Potential contamination within shallow subsoil materials from historic activities (Coal Yard, Tobacco Factory) and from unknown source of material which could have been contaminated during original filling.	migration to indoor and outdoor air	and Commercial Future Users.	

Migration of contamination from adjacent properties such as historic coal yards, tobacco factories, railway lines, and railway depots. Potential historical on-site spills - Potential contamination within shallow subsoil materials from historic activities (Coal Yards, Railway Depots and Lines) and from unknown source of material which could have been contaminated during original filling.	Inhalation/ dermal contact/ ingestion of soils/ dusts	Onsite Residents and Commercial Future Users.	Y
Potential contamination within groundwater	Migration of contaminants in the bedrock aquifer	Groundwater users.	Y

Note: Generic risk assessments do not assess risks to construction workers who are managed under the Safety and Welfare at Work Regulations.

Environmental Risk:

- Potential for residual soils to contaminate groundwater with the source being the railway tracks
- Groundwater migration offsite to groundwater users
- Human Health Risk:
- Potential for Direct Contact with contaminated soil and/or groundwater
- Inhalation of dust and vapours indoor and outdoor
 Use of potentially contaminated groundwater

NTS - VERTICAL SCALE EXAGGERATED. FOR ILLUSTRATIVE PURPOSES ONLY.

Figure 3.1 Preliminary Conceptual Site Model

4. SITE INVESTIGATION - METHODOLOGY

4.1. Buro Happold – Preliminary Investigation (2008)

Burro Happold undertook a preliminary site investigation of the Connolly Station car park site between July and September 2008. All of the intrusive investigation works were carried out by Glover. The intrusive investigation completed included the following:

- Drilling of 12No. windowless sample boreholes:
 - o WS1-WS12
- Drilling of 7No. cable percussion boreholes:
 - o BH01-BH07
- Drilling of 3No. rotary core follow on borehole to prove bedrock.
- Convert 14No. boreholes as gas and/or groundwater monitoring wells:
 - BH01, BH02, BH03, BH04, BH05, BH06, BH07, WS3, WS6, WS9, WS10, WS12.
- Sampling and analysis of soil from the boreholes.
- Sampling and analysis of water from the boreholes.

4.2. Laboratory Analysis – Soil

Forty (40No.) soil samples were collected in total and submitted to ALcontrol Geochem Laboratories, a UKAS accredited laboratory. From these 40No. of soil samples, 38No. were tested for metals, 15No. for TPHs, 32No. for PAHs, 9No. for PCBs, 35No. for Organics and 35No. for Inorganics. Only 5No. of samples were sufficiently tested to be deemed as a comprehensive analysis as outlined in Table 4.1 below which further outlines the analytical suites used;

Analytical Suite	No. of Samples tested
Full Suite*	5
Metals, TPHs, PAHs, Organics & Inorganics	7
Metals, PAHs, Organics & Inorganics	17
Metals, PAHs, PCBs, Organics & Inorganics	2
Metals, Organics & Inorganics	3
Metals, PCBs, Organics & Inorganics	1
TPHs	2
Metals, TPHs, Organics & Inorganics	1
Metals	2

Table 4.1 Soil Analytical Suites

*= Metals, TPHs, PAHs, PCBs, Organics & Inorganics

An Asbestos screen was performed for all samples with the exception of WS11 (0.50), BH3 (1.0) and BH4(5.0-5.3 & 6.0 -6.3). Leachability testing was also performed 20No. soil samples.

Samples were collected from surface level with the shallowest sample collected from a depth of 0-0.5 meters below ground level (mbGL) to a maximum depth of 7.2mbGL.

4.3. Laboratory Analysis – Water

Groundwater was sampled from nine locations (BH1-BH7, WS7 and WS11) on two to three occasions between 29th August 2008 and 17th September 2008. An interface probe was used to monitor groundwater levels as well as light and dense non-aqueous phase liquid (LNAPL & DNAPL). No LNAPL or DNAPL was detected in any of the sampling locations during the monitoring period.

As described in the Buro Happold report, during groundwater sampling hydrocarbon odours were recorded in water purged from WS11, BH03 and BH02 and a slight hydrocarbon odour was noted in purged water from BH06 and WS7. In addition, a slight hydrocarbon sheen was observed on water purged from WS11, BH02, BH06 and BH03. Foam was also observed on BH03. Purged groundwater from all boreholes, except from BH02, was high in suspended solids. No information was provided on the purging or sampling methods used, sample interval, whether field parameters were recorded or the volume purged from each well prior to sampling.

Twenty five (25No.) groundwater samples were collected and submitted to ALcontrol Geochem Laboratories, a UKAS accredited laboratory.

	Table 4.2	Groundwater	Analytical	Suites
--	-----------	-------------	------------	--------

Analytical Suite	No. of Samples tested
Full Suite*	2
Metals, TPHs, PAHs, Organics & Inorganics	23
Metals	1

*= Metals, TPHs, PAHs, PCBs, Organics & Inorganics

The 1No. sample tested for just metals in Table 4.2 was a retest due to laboratory contamination. A further breakdown of chemical analysis is outlined below;

- Heavy metals (antimony, arsenic, boron, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, zinc, hexavalent chromium);
- Volatile Organic Compounds (VOCs) including tentative identified compounds (TICs);
- Semi-VOCs (sVOCs);
- Total Petroleum Hydrocarbons Criteria Working Group (TPH CWG);
- Speciated Polychlorinated biphenyl (PCBs);
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) and Methyl-Tert-Butyl-Ether (MTBE);
- Phenols;
- Sulphates, chloride, ammoniacal nitrogen as N, total alkalinity as CaCO₃,
- Free cyanides;
- BOD, COD, pH, Total Organic Carbon, Total Dissolved Solids and Total Suspended Solids;
- Total Cations and Total Anions.

4.4. Groundwater Level Monitoring

Groundwater levels were measured on seven occasions during the investigation by Glovers (2008). Levels were also measured on four occasions during post ground investigation monitoring undertaken by ALcontrol Dublin. From these observations, it is stated by Buro

Happold report that the groundwater table is located within the gravel layers of the Glacial Till at approx. 2.5m below the existing road level (Malin Head 0 mOD). The report also states that the groundwater table is relatively flat across the site.

BH01, BH02 and BH03 were subject to falling head tests which indicated that the permeability of the gravel layer ranged from $2.3 \times 10^{-5} - 1.1 \times 10^{-6}$ m/s while the boulder clay recorded a permeability of 4.0 x 10⁻⁶ m/s. The monitoring data was not available to OCSC for review at the time of writing this report.

5. SITE INVESTIGATION – FINDINGS

5.1. Conditions Encountered – Geology

The geology of the site from the intrusive investigation can be summarised to be as follows:

- Made Ground comprising of 'a mixture of clay, sand and gravel containing cobbles and occasional boulders along with pieces of glass, brick, sea shells, ceramics, timber, rubber, concrete, ash and pottery'. The Made Ground varied in thickness from 0.1m to 7.2m. The thickness of Made Ground is expected given that the site is higher than Sheriff Street Lower by at least 5m. Standard Penetration Test (SPT) N value ranged between 3 to 24 in this layer;
- A discontinuous layer of Estuarine Deposit layer comprising of 'grey gravelly sandy SILT with sea shells' was encountered in 5No. locations mainly located in the lower half of the site towards the Sheriff Street Lower side. The thickness of this layer varied between 0.5 and 3.2m when it was encountered, No SPT N values were taken in this layer;
- In addition, a layer up to 1.9m thick of dark grey/black sandy silt with fibres and an organic odour below the Made Ground in WS03 and BH02. Hydrocarbon odours were noted within this strata in WS11 at depth of circa 2mbGL; the odour did not extend to the underlying glacial till layer;
- A glacial till layer of 'Dense dark grey sandy GRAVEL' embedded among or between a frequent layer of 'firm to stiff brown/dark grey sandy gravelly CLAY with occasional cobbles (Boulder Clay)' was encountered across the site. The layer of the GRAVEL ranged in thickness between 1.7 and 17m while the layer of the sandy gravelly CLAY ranged between 0.6 to 7m. The total thickness of this layer has not been proven but it extended to a maximum investigation depth of 42.3mbGL. SPT N values ranged between 22 to 68 for the GRAVEL layer and from 12 to 48 for the CLAY layer;
- Bedrock was not encountered throughout the SI, the bedrock geology is expected to be *LIMESTONE*.

6. GENERIC QUANTITATIVE RISK ASSESSMENT

6.1. Generic Assessment Criteria

A risk-based approach has been adopted for the assessment of data obtained from the Burro Happold Geotechnical & Geoenvironmental Interpretive Report. In order to assess the human health and environmental risks posed by potential contaminants within the underlying soils and groundwater, a comparison of the laboratory analytical results for soil and groundwater samples using Generic Assessment Criteria (GAC) was carried out.

Constituent concentrations in soil and groundwater at the site were deemed 'potentially significant' where they exceeded the generic values. These generic values are used for initial assessment of contaminant concentrations for the purpose of providing an initial indication of impacts at a site. Comparison with GACs is a means of evaluating the compounds that could proceed to a more detailed assessment. It should be noted that generic exceedances are not an indication of the requirement for remediation and instead are indicative of the need for further assessment or Detailed Quantitative Risk Assessment (DQRA).

Additionally, where further risk assessment is considered necessary, use of more site-specific information in the assessment can often lead to the conclusion that the observed concentrations are present at levels which represent an acceptable level of risk, considering the actual or proposed end use of a site (although each site assessment has to be considered on an individual basis).

The risk to construction workers is not considered under the CLEA methodology. It is assumed that health and safety guidelines will be adhered to and appropriate health and safety planning/assessments will be undertaken in advance of any on-site works.

6.2. Soil Screening Criteria

The soil analytical data was compared with a set of standard GAC for Residential Use without Plant Uptake in addition to Commercial/Industrial Land Use – The LQM/CIEH S4ULs for Human Health Risk Assessment (2015) in addition to the SP1010 – Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination CL:AIRE (2014) and the EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment (2010). The reason that two different scenarios are used is to put the concentrations observed into context given that the site will be used for both residential and commercial landuse.

The use of standard residential without plant uptake GACs to assess residential risk in this scenario is conservative given that these are apartments with no gardens and additionally the receptors have the added protection of an underground basement, however as an initial generic assessment this will allow the screening out of significant contaminants of concern.

In general GACs are conservative screening criteria protective of human health. If the concentrations are below the GAC, then the risks to human health are considered negligible. If the concentrations are above the GAC, a potential risk to human health is identified and further assessment is required. The GACs are consistent with the principles of human health protection in Irish EPA, UK DEFRA and UK Environment Agency guidance.

The active exposure pathways considered under the commercial/industrial scenario are:

- Ingestion of soil and dust;
- Dermal contact with soils and dust;
- Inhalation of dusts; and
- Inhalation of vapours (indoor and outdoor air).

Project No. B909 Issue No.2, 04.10.2019

6.3. Groundwater Screening Criteria

In terms of protected waters (i.e. the underlying groundwater and nearby surface waters), there is the potential for contaminated soils (if present) to impact these via leaching. However, estimated soil GACs using a partitioning equation result in theoretical values that are likely to be very conservative. Greater reliance is therefore placed on measured groundwater contaminant results to assess the potential risks to waters (surface and ground) in the vicinity of the site.

Groundwater data has been compared with the overall threshold value range identified in the 2016 European Communities Environmental Objectives (Groundwater) Regulations (Statutory Instrument No 366 of 2016). In the event that there is no overall threshold value range identified for a parameter and where one is available as an Interim Guideline Values (IGV) published by the Environmental Protection Agency in the Guidance Document titled 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' (2003) an IGV has been provided instead.

It is noted that the comparison of groundwater analytical results with the Groundwater Regulations is not representative of actual risk and is used as a guide to the potential risks posed. Contaminant concentrations below the GACs are considered not to warrant further risk assessment. However, concentrations above the generic screening criteria may require further consideration through either qualitative or quantitative assessment.

To determine the vapour risk from groundwater, the newly published Society of Brownfield Risk Assessment – Development of Generic Assessment Criteria for Assessing Vapour Risks to Human Health from Volatile Contaminants in Groundwater February 2017 were used to assess potential risks from volatile compounds in on site groundwater.

6.4. Soil Assessment

The soil analytical results are presented in Table 1 along with the GAC values. During the SI works, a total of 40No. of soil samples were obtained from the window samples and boreholes. From the 40No. samples, 26No. samples were determined to display GAC exceedances. GAC exceedances consisted mostly of PAHs but also some metals. PAH exceedances included Benzo(a)pyrene, Dibenzo(ah)anthracene, Benzo(a)anthracene and Naphthalene. GAC exceedances for the metals were in the form of Arsenic, Lead and one incidence of Mercury.

6.4.1.Total Petroleum Hydrocarbons, BTEX and MTBE

No samples exceeded the Residential, Public Open Space or Commercial GAC values for TPH, BTEX or MTBE.

6.4.2. Polycyclic Aromatic Hydrocarbons

Trace concentrations of some PAH compounds were reported for a number of samples across the site primarily associated with the upper made ground.

The analytical results for PAHs were below the Residential and Public Open Space GACs protective of human health in all of samples with the exception of:

- Benzo(a)pyrene (Public Open Space GAC 5.7mg/kg) in 2No. samples including WS9 (1.0m) at 7.209mg/kg and BH06 (2.0m) at 16.122mg/kg. Both values also exceeded the residential GAC (3.2mg/kg) along with WS9 (0.5m) at 4.355mg/kg.
- Dibenzo(ah)anthracene (Public GAC 0.58mg/kg) in 6No. samples including WS1 (1.0m) 3.2mg/kg, WS2 (1.0m) 1.239mg/kg, WS3 (0.5m & 4.0m) 0.836mg/kg & 1.081mg/kg, WS9 (0.5m) 2.137mg/kg and BH04 (1.0m) 0.678mg/kg. The above samples also exceeded the residential GAC along with 8No. samples including WS12 (0.5m) 0.317mg/kg, WS1 (5.0m) 0.525mg/kg, WS2 (3.0m) 0.483mg/kg, WS8 (2.0m)

0.36mg/kg, WS11 (2.0m) 0.363mg/kg, BH03 (0.5m), BH05 (2.0m) 0.348mg/kg and BH06 (1.0m) 0.455mg/kg. Note that 2No. samples including WS9 (1.0m) 3.874mg/kg and BH06 (2.0m) 10.344mg/kg also exceeded the Commercial GAC (3.6mg/kg).

- Benzo(a)anthracene (Resi GAC 2.3mg/kg) in 1No. sample from BH06 (2.0m) 21.06mg/kg. The sample did not exceed the Commercial GAC.
- Naphthalene (Resi GAC 2.3mg/kg) in 1No. sample from BH06 (2.0m) 5.377mg/kg. The sample did not exceed the Commercial GAC.

6.4.3.Metals

The analytical results for metals in samples were below the Residential and Public Open Space GACs protective of human health with the exception of:

- Arsenic in 2No. samples including WS1 (5.0m) 124mg/kg and WS2 (5.0m) 150mg/kg exceeded the Public Open Space GAC of 79mg/kg. Both of these samples also exceeded the Residential GAC of 40mg/kg along with WS2 (3.0m) 71mg/kg. The samples did not exceed the Commercial GAC of 640mg/kg.
- Lead (Public GAC 630mg/kg) in 11No. samples including WS1 (1.0m & 5.0m) 650mg/kg & 1402mg/kg, WS2 (3.0m & 5.0m) 972mg/kg & 1425mg/kg, WS3 (0.5m) 821mg/kg, WS5 (0.5m & 2.0m) 829mg/kg & 2263mg/kg, WS7 (3.0m) 739mg/kg, WS8 (2.0m) 1118mg/kg, WS12 (1.0m) 937mg/kg and BH06 (2.0m) 1187mg/kg. These samples also exceeded the Residential GAC (310mg/kg) in addition to 11No. of other samples including WS1 (3.0m) 365mg/kg, WS2 (1.0m) 408mg/kg, WS6 (1.0m) 606mg/kg, WS12 (0.5m) 481mg/kg, BH01 (2.0m) 362mg/kg, BH03 (0.5m) 466mg/kg, BH04 (1.0m, 5.0-5.3m & 6.0-6.3m) 392mg/kg, 430mg/kg & 480mg/kg, BH05 (2.0m) 602mg/kg and BH06 (1.0m) 439mg/kg. All samples did not exceed the Commercial GAC of 2,300mg/kg.
- Mercury in 2No. samples exceeded the Residential GAC (56mg/kg) including WS1 (5.0m) 308mg/kg and WS2 (5.0m) 320mg/kg. Both of these samples also exceeded the Public Open Space GAC (16mg/kg) in addition to WS7 (3.0m) 16mg/kg.

6.4.4.PCBs

No samples tested positive for PCBs above the laboratory limits of detection.

6.5. Groundwater Assessment

The risk to groundwater has been assessed from soil leachate values and their direct comparison to Groundwater Threshold Values and, in their absence, to IGV values. The groundwater analytical results for the site are presented in Table 3 along with Environmental GAC values, while results are compared to the SoBRA Human health GAC values in Table 4.

A total of 25No. groundwater samples were collected with GAC exceedances reported for 24No. samples. As stated in the original Buro Happold report, highly elevated concentrations of Chromium, Lead, Nickel and Zinc were recorded for BH04 on the 04/09/2008 which were suspected to have been cross contamination/lab error. Further laboratory analysis confirmed the contamination. Chromium results which had original displayed a concentration of 126 μ g/l, reduced to 6 μ g/l upon retesting. Therefore no further comment will be given on the heavy metal contaminant levels in the sample from BH04 taken on the 04/09/2008 as it is stated in the Buro Happold report that laboratory contamination was confirmed.

In terms of the 23No. remaining samples displaying GAC exceedances, exceedances consisted of Metals, PAHs, TPH, BTEX, MTBE and some indicator parameter such as Chloride, Sulphate, Total Hardness and Ammoniacal Nitrogen.

In terms of the Society of Brownfield Risk Assessment (SoBRA) which was set up to develop a methodology for assessing chronic risk to human health via inhalation of groundwater-derived vapours and also to derive generic assessment criteria (GAC) for selected contaminants. From the analytical results, 7No. samples were noted for exceedances for Aliphatics and 3No. samples for Aromatics.

6.5.1.LNAPL & DNAPL Samples

No visual, olfactory, or interface probe evidence of the presence of LNAPL or DNAPL during the investigation and/or sampling.

6.5.2.TPH, BTEX and MTBE

Groundwater samples were submitted to the laboratory for a suite of analysis to determine if there was widespread contamination within the groundwater beneath the site. In that context, total petroleum hydrocarbons (criteria working group carbon banding), BTEX and MTBE (an additive in petrol) was scheduled for all samples. Detected TPH concentrations were consistently elevated in BH02 and WS11. Concentrations ranged from 15,148.8-41,193µg/l which exceeded the EPA Interim value (IGV) and Groundwater regulations. TPH concentrations were occasionally elevated in BH03 (29/08/2008 & 10/09/2008), BH04 (29/08/2008), BH05 (29/08/2008 & 10/09/2008, BH06 (10/09/2008), BH07 (29/08/2008) and WS7 (29/08/2008). Concentrations ranged from 112-48,320µg/l on the dates noted above, during which concentrations exceeded the EPA IGV and Groundwater regulations. TPH concentrations were consistently reported below the laboratory MDL only for BH01.

VOC analytical results for the groundwater samples were below the EPA IGV and Groundwater regulations with the exception of samples from WS11 which produced exceedances for the following:

- MTBE in 2No. samples on the 04/09/2008 (14µg/l) and 10/09/2008 (17µg/l) exceeding only the Groundwater regulation threshold (14µg/l);
- Benzene in 1No. sample on the 04/09/2008 (31µg/l) exceeding both the Groundwater regulation (0.75µg/l) and EPA IGV (1µg/l);
- Toluene in 1No. sample on the 29/09/2008 (19µg/l) exceeding the EPA IGV (10µg/l) threshold only;
- Ethylbenzene in 3No. samples on the 29/08/2008 (211μg/l), 04/09/2008 (13μg/l) and 10/09/2008 (15μg/l) exceeding the EPA IGV (10μg/l);
- Xylene in 3No. samples on the 29/08/2008 (527µg/l), 04/09/2008 (35µg/l) and 10/09/2008 (23µg/l) exceeding the EPA IGV (10µg/l).

SoBRA 2017 GACs

No exceedances were noted in any of the samples with the exception of BH03 and WS11. Aliphatic exceedances were noted which included the following:

C6-C8 in 1No. sample from WS11 (04/09/2008 – 1,927µg/l);

- C8-C10 consistently in 3No. samples from WS11 across each of three sampling dates with concentrations of 948.8µg/l, 1,649.6µg/l and 315.6µg/l);
- C10-C12 consistently in 3No. samples from WS11 across each of the three sampling rounds with concentrations of 1,272.8µg/l, 1,403.2µg/l and 344.4µg/l.

Some significant exceedances in Aromatics were also noted which included the following;

- EC12-EC16 in 1No. sample from BH03 (29/08/2008 48,320µg/l);
- EC8-EC10 in 2No. samples from WS11 (29/08/2008 2161.2µg/l & 04/09/2008 2,522.4µg/l).

6.5.3.PAHs

All PAHs were below the laboratory MDL in BH01. The PAH analytical results for the remaining groundwater samples did not exceed the EPA IGV or Groundwater regulations with the exception of:

- Fluoranthene in 4No. samples exceeding the EPA IGV (1µg/l) including BH02 (10/09/2008 2.407µg/l), BH03 (10/09/2008 1.135µg/l), BH06 (17/09/2018 1.318µg/l) and WS11 (29/08/2008 1.792µg/l);
- Benzo(bk)fluoranthene in 3No. samples exceeding the EPA IGV (0.5µg/l) including BH02 (10/09/2008 – 2.07µg/l), BH03 (10/09/2008 – 0.903µg/l) and WS11 (29/08/2008 – 0.551µg/l);
- Benzo(a)pyrene in 6No. samples including BH02 (10/09/2008 0.714µg/l), BH03 (10/09/2008 0.453µg/l), BH05 (29/08/2008 0.015µg/l), BH06 (17/09/2008 0.148µg/l), WS7 (29/08/2008 0.053µg/l) and WS11 (29/08/2008 0.206µg/l). All the samples mentioned exceeded the Groundwater regulation value of 0.0075µg/l and EPA IGV of 0.01µg/l;
- Indeno(123cd)pyrene in 4No. samples exceeding the EPA IGV (0.05µg/l) including BH02 (10/09/2008 – 0.204µg/l), BH03 (10/09/2008 – 0.252µg/l), BH06 (17/09/2008 – 0.069µg/l) and WS11 (29/08/2008 – 0.117µg/l);
- Benzo(ghi)perylene in 5No. samples exceeding the EPA IGV (0.05µg/l) including BH02 (10/09/2008 0.248µg/l), BH03 (10/09/2008 0.217µg/l), BH06 (17/09/2008 0.082µg/l), WS7 (29/08/2008 0.057µg/l) and WS11 (29/08/2008 0.128µg/l);
- Total 16 EPA PAHs in 12No. samples including BH02 (10/09/2008 25.399µg/l & 17/09/2008 6.57µg/l), BH03 (29/08/2008 48.871µg/l & 10/09/2008 15.304µg/l), BH04 (29/08/2008 0.208µg/l), BH05 (29/08/2008 0.608µg/l) and BH06 (10/09/2008 0.347µg/l & 17/09/2008 12.445µg/l), BH07 (29/08/2008 0.149µg/l), WS7 (29/08/2008 1.105µg/l) and WS11 (29/08/2008 17.734µg/l & 10/09/2008 (0.275µg/l). All exceedances were for the EPA IGV (0.1µg/l).

6.5.4. Metals and Indicator Parameters

Chloride was detected above the GAC interim (30mg/l) and Groundwater regulations (187.50mg/l) thresholds for BH01, BH02, BH03, BH04, BH07 and WS7 on multiple sampling dates with concentrations as high as 1,986mg/l. Similarly BH05 displayed high chloride concentrations however only exceeding the Interim GAC value. Note BH06 and WS11 did not

exceed GAC thresholds for Chloride. However regardless, these high concentrations are likely naturally occurring due to the location of the site in close proximity to the tidally influenced River Liffey.

Sulphate concentrations were detected above both the GAC interim (200mg/l) and Groundwater regulations (187.50mg/l) thresholds on each round of sampling for BH01, BH02, BH005, BH07 and WS7 with concentrations ranging from 261-1,021mg/l. BH03 (29/08/2008) and BH04 (29/08/2008) similarly exceeded both GAC values however only on one sampling occasion.

With the exception of BH03 and BH04 which exceeded the Interim GAC value of 200mg/l for Total Hardness on the one of three (29/08/2008) and three of four (29/08/2008, 04/09/2008 & 10/09/2008) sampling rounds respectively, all other locations exceeded the GAC value during each of the sampling dates.

The analytical results for metals in the groundwater samples were below the EPA interim guideline values and Groundwater regulations with the exception of:

- Dissolved Arsenic (Groundwater Regs 7.5µg/l) in;
 - BH05 on the 29/08/2018 (10µg/l), 17/09/2008 (10µg/l) and 10/09/2008 (9µg/l).
 BH05 samples from the 29/08/2008 and 17/09/2008 also exceeded the EPA interim value.
 - BH07 on the 04/09/2008 (8µg/l) and 10/09/2008 (8µg/l).
 - ➤ WS7 04/09/2008 (8µg/l).
- Dissolved Zinc (Groundwater Regs 75µg/l) in;
 - BH01 10/09/2008 (151µg/l);
 - ➢ WS11 29/08/2008 (76µg/l);

Note the sample from BH01 also exceeded the EPA interim value.

- Dissolved Lead (Groundwater Regs 7.50µg/l) in;
 - ➢ BH01 − 10/09/2008 (16µg/l);
 - ➢ BH03 04/09/2008 (19µg/I);
 - ➢ WS7 04/09/2008 (35µg/l);
 - ➤ WS11 04/09/2008 (62µg/I);

All of the samples above for dissolved lead also exceeded the EPA interim guideline value of $10\mu g/l$.

Elevated levels of Ammoniacal Nitrogen were recorded during all sampling rounds for BH02, BH05, BH06, BH07, WS7 and WS11 which all exceeded the Groundwater regulations of 0.18mg/l significantly with concentrations ranging from 0.8 - 39.4mg/l. Additionally, an elevated pH value of 10.05 was determined for BH04 on the 29/09/2008.

6.5.5.Volatile Organic Carbons (VOCs, sVOCs), Phenols and PCBs

Other than BTEX no other VOCs, phenols, phthalates or sVOCs, were identified.

6.5.6.Vapours from Groundwater

The groundwater results were compared to the SoBRA GACs (2017) for residential and commercial use as a screening exercise to evaluate whether the concentrations on site present a potential risk to human health onsite and offsite. Table 6.1 outlines the SoBRA GACs for residential developments exceedances for the site. Some of these exceedances were significant but there were no exceedances of the commercial GAC.

In addition to the compounds outlined in Table 6.1, MTBE, Benzene, Toluene, Ethylbenzene, Xylene, Fluoranthene and Benzo(a)pyrene were identified in the groundwater exceeding the EPA IGV. These chemicals are sufficiently volatile and toxic and may require additional assessment to determine if they present a risk to indoor or outdoor air from volatilisation.

Location ID	Date Sampled	Parameter	Concentrations (µg/l)	SoBRA Res GAC (µg/l)				
	04/09/2008	C6 – C8	1927	1500				
	29/08/2008		948					
	04/09/2008	C8 – C10	1649.6	57				
	10/09/2008		315.6					
WS11	29/08/2008		1272.8					
	04/09/2008	C10 – C12	1403.2	37				
	10/09/2008		344.4					
	29/08/2008		2161.2	1000				
	04/09/2008	EC8-EC10	2522.4	1900				
BH03	29/08/2008	EC12 – EC16	48320	39000				

Table 6.1 SoBRA GAC screened values

6.6. Ground Gas Assessment

Ground gas (Carbon Dioxide and Methane) monitoring was undertaken at 7No. locations across the site comprising of four visits at weekly intervals between 29th August and 17th of September 2008. The sampling visits were conducted during periods when atmospheric pressure ranged from 990-1019nPa. Sample locations included WS6, WS9, WS10, WS12, WS3, WS7 and WS11 with response zones ranging from made ground to estuarine deposits and boulder clay. Gas samples were collected from WS3, WS10 and WS11 on one occasion and analysed in a laboratory to confirm the readings recorded on site. Oxygen and carbon dioxide concentrations were consistent with laboratory analysis however methane concentrations for WS11 (5.7%) were slightly higher than the laboratory results (4.2%). The gas monitoring equipment used was a GA2000 gas analyser which is a certified methane analyser, recording/monitoring of Hydrogen Sulfide (H2S) and Carbon Monoxide (CO) was not carried out. The GA2000 will give accurate methane readings however only when no other hydrocarbons are present. Elevated gas levels for carbon dioxide and methane are outlined in Table 6.5.

Gas	Flow Rate (l/hr)	Atmospheric Pressure (mb)	Location ID	Response Zone Stratum	Date Sampled	Concentration (% Air)
	0	1019	WS6	MG	17/09/2008	6.4
	0.2	1017			29/08/2008	7.7
	0.2	990	14/00		04/09/2008	9.4
Carbon	0.1	999	WS3	MG/SL1	10/09/2008	10.6
Dioxide	0.2	1019			17/09/2008	10.2
	0.1	991			04/09/2008	9.3
	0.2	1001	WS11	SLT/BC	10/09/2008	5.7
	0.1	1019			17/09/2008	8.7
	0	1019	WS10	MG	17/09/2008	5.6
	0.1	991			04/09/2008	100
wethane	0.2	1001	WS11	SLT/BC	10/09/2008	1.2
	0.1	1019			17/09/2008	69.7

Table 6.5 Gas monitoring results

SLT - Silt BC - Boulder Clay MG - Made Ground

6.6.1.Possible Sources

The previous site investigations demonstrated that the Connolly site is underlain by a significant volume of made ground of up to 7.2 metres thick in places. Made ground can contain some putrescible anthropogenic materials such as cloth and wood fragments, but this is not considered to be at a level sufficient to produce volumes of ground gas that would be at risk to new buildings. There is no record of putrescible waste being deposited on the site, nor any evidence from the site investigation to indicate any significant amount of putrescible waste having been deposited in the site.

There is potential evidence of volatilisation of aliphatic hydrocarbons from the groundwater with site investigation location WS11 demonstrating elevated methane and carbon dioxide levels in conjunction with elevated levels of aliphatics and other hydrocarbons in the soil and groundwater. Hydrocarbon odours were noted during the site investigation below 2.0m at WS11 however no visual/olfactory evidence was recorded. Similarly during groundwater sampling, hydrocarbon odours were noted in water purged from WS11, BH03 and BH02 and a slight hydrocarbon sheen was noted in the purged water from WS11, BH02, BH06 and BH03.

The desk study indicated previous possible sources of hydrocarbons from fuel storage tanks onsite, chemicals/lubricants associated with train maintenance and it is also possible that an additional source of hydrocarbons may be external to the site as previous surroundings land uses have been indicted to include timber yards and fuel storage facilities such as coal yards and tobacco factories.

As noted by the authors of CIRIA C665 (2007) glacial tills with no other ground gas source can yield gas concentrations of CO_2 in the order or 5%. It is noted that the maximum recorded CO_2 during the monitoring was 10.6%. Furthermore, these authors indicate that experience has shown that where natural ground is disturbed it is common to see a fall in gas concentration

Project No. B909 Issue No.2, 04.10.2019

with increased time from disturbing the ground. This is not the case where there is a gas producing source.

Therefore, the credible sources of CO₂ and Methane are:

- Made Ground;
- Underlain Natural Ground;
- Onsite hydrocarbon contamination of soil and groundwater;
- Migration of Carbon Dioxoide/Methane from offsite sources.

6.6.2. Possible Receptors

The receptors that have been considered during this assessment are the onsite residential receptors of the redevelopment. The proposed development best fits a type B building; i.e. private or commercial property with central building management control of any alterations to the building or its uses but limited to central building management control of the maintenance of the building, including gas protection measures. Type B buildings can consist of small to medium size rooms with passive ventilation. May be of conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels.

6.6.3.Possible Pathways

The dominant lithology on the site is gravelly clay. Pathways for gas migration through the clays are potentially via:

- Macropores such as land drains, glacial fractures, or deep root voids;
- Gravel and sand lenses and bands within the clays;
- Volatilisation of gas dissolved within groundwater.

Pathways for ingress of ground gas into buildings are:

- Services, but given that the proposed development is a new build, services can be cast into the slab and be sealed to ensure they are waterproof therefore gas migration will not be significant.
- Vertical migration through cracks in the floor slab.
- Accumulation in voids beneath floor slab.

Ground gas ingress into buildings will be prevented by risk appropriate measures built into the basement and slab design and construction methodology thus breaking the source pathway receptor linkage. The building will be supported on piled foundations, measuring approximately 900mm in diameter and extended into the Limestone bedrock, which underlies the site at depth. The piles will be constructed using bored techniques, which form an intimate skin friction and limit ground disturbance. All piles will be embedded into the pile caps / ground beams. Thus, the piles do not create voids in the soil around them nor do they increase the permeability of the soil. Therefore, they do not form preferential pathways for vapour/gas migration.

6.6.4. Ground Gas Risk

The soil data has been assessed with reference to CIRIA report C665. Consideration has therefore been given to both methane and carbon dioxide concentrations as well emission (flow) rates.

As the possibility of an offsite source of dissolved gas volatilising within the site from contaminated groundwater cannot be discounted, and as the monitoring data set is both temporally and spatial limited, as recommended by the BS8485:2015 standard, the worst case Gas Screening Value (GCV) was derived, i.e. the maximum recorded flow for any monitoring well multiplied by the maximum recorded concentration of any gas. This gives the site a characteristic GSV of 0.2 litres/hour (I/hr). As specified in Table 2 of the CIRIA C665 report, resultant from this derived GSV and because gas flow is less than <70I/hr, the site has a characteristic gas situation (CS) at a level of CS2 which is a low hazard potential.

As specified in Table 3 of the standard, the proposed development best fits a Type B characterisation, as a consequence mitigation measures put in place for the management of ground gas should as specified in Table 4, obtain a Minimum Gas Protection Score (MPGS) of 3.5. A combination of two or more of the following types of protection measures should be used to achieve that score:

- The structural barrier of the floor slab, or of the basement slab and walls if a basement is present;
- Ventilation measures; and
- Gas resistant membrane

This is a very conservative assessment, and if gas protection measures used do not meet the MPGS of 3.5 then further investigation of ground gas should be undertaken to assess the risk of the designed gas protection measures.

As part of the proposed development, a significant volume of the made ground and natural material will be excavated and removed offsite to a suitable waste facility. However the structure of the railway arches along Sheriff Street Lower will be retained. A ground gas methane reading of 5.6% was recorded in the vicinity of this area. Therefore additional consideration will have to be given to this area in relation to ground gas protection measures. Further ground gas investigation may also be required which may be in the form of a more extensive ground gas monitoring programme or DQRA.

7. REFINED CONCEPTUAL SITE MODEL (CSM)

Based on the findings of the soil and groundwater assessment i.e. the results of the GQRA, potential contamination source areas have been identified for the site. The CSM can now be refined using site specific information and the potential risk to human health can be assessed taking into account the proposed redevelopment of the site as outlined in Section 1.3.

7.1. Source – Made Ground – from previous site use or original source.

The exceedances of the GAC for metals (arsenic and lead) for residential without plant uptake were typically associated with the made ground. All samples analysed are from the top 6.5m layer of soil, based on the proposed plans discussed in Section 1.3, there will be a 10m dig within the basement footprint and hence all risk associated with the Made Ground within the basement footprint will be removed. Sampling of the soils (Natural Ground) which will be directly beneath and in contact with the basement is recommended.

Outcome: Further assessment required.

7.2. Source – Ground Gas/Vapour Risk.

Significant concentrations of ground gas were measured across the site in the 2008 sampling events. Elevated concentrations of hydrocarbons in the groundwater might pose a vapour intrusion risk to the future development. It is recommended that standpipes are to be installed and screened across the layers of soil which are to remain on-site post development, to investigate the risks associated with ground gas and/or vapour intrusion risks.

Outcome: Further assessment required.

7.3. Source – Offsite Sources

As identified in the initial CSM, migration of contamination from adjacent properties historically used as timber yards, coal yards, railway lines and associated depots is a significant concern. However as part of the design for the site, a secant pile wall is proposed for the entirety of the basement footprint.

Based on the above, the migration pathway is broken after construction as a result of the pile wall and therefore no further mitigation is required. Note. Migration pathway to the areas associated with the Arches which will remain outside of the pile wall will require additional assessment and consideration at design.

Outcome: Further assessment required.

7.4. Source – On-Site Oil Tanks

The presence of oil tank require further investigation, the tank should be decommissioned prior to redevelopment of the site, and the area surrounding its location should be investigated if additional site investigation takes place.

Outcome: Further assessment required.

7.5. Source – Groundwater

The sampling exercise in 2008 show that groundwater across the site is impacted by Polycyclic Aromatic Hydrocarbons (PAHs), BTEX, Phenols and Total Petroleum Hydrocarbons.

Based on the above, additional evaluation and assessment is required during the next phase of works.

Outcome: Further assessment required.

7.6. Refined CSM

Table 7.1 Summary Revised Conceptual Site Model

SOURCE	PATHWAY	RECEPTOR	POTENTIAL POLLUTANT LINKAGE Y/N
En	vironmental		
Migration of contamination from adjacent properties such as historic timber treatment, coal yards and in particular the adjacent railway lines and depots.	Migration of		N
Potential historical on-site spills -	contaminants	Groundwater in the Gravel and/or	
Potential contamination within deep subsoil materials from historic activities (railway lines, oil tanks and associated maintenance yards) and from unknown source of material which could have been contaminated during original filling.	from natural soils	bedrock aquifer	Y
Potential contamination within groundwater	Migration of contaminants in the subsoil and bedrock aquifer	Potential surface watercourses (River Liffey) via groundwater baseflow.	Y
Hu	ıman Health		
Migration of contamination from adjacent properties such as coal yards, timber yards, and in particular the adjacent railway lines and depots.	Vapour migration to indoor and outdoor air	Onsite Residents and Commercial Future Users.	N
Migration of contamination from adjacent properties such as historic coal yards, tobacco factories, railway lines, and railway depots.	Inhalation/		
Potential historical on-site spills - Potential contamination within deep subsoil materials from historic activities (Coal Yards, Railway Depots and Lines) and from unknown source of material which could have been contaminated during original filling.	dermal contact/ ingestion of soils/ dusts	Onsite Residents and Commercial Future Users.	Y
Potential contamination within groundwater	Migration of contaminants in the bedrock aquifer	Groundwater users.	N

Note: Generic risk assessments do not assess risks to construction workers who are managed under the Safety and Welfare at Work Regulations.

A simple pictorial illustration of the revised CSM following the design measures is included in Figure 7.1.

Environmental Risk:

- Potential for upper soils to contaminate groundwater/deeper soils
- Bedrock groundwater migration offsite to groundwater users
- Bedrock groundwater migration to surface water bodies
 Preferential pathway flow between shallow groundwater and bedrock groundwater

Human Health Risk:

- Potential for Direct Contact with contaminated soil and/or groundwater
- Inhalation of dust and vapours indoor and outdoor
- Use of potentially contaminated groundwater

NTS - VERTICAL SCALE EXAGGERATED. FOR ILLUSTRATIVE PURPOSES ONLY.

Figure 7.1 Revised Conceptual Site Model

8 WASTE SOIL CLASSIFICATION

The following classification is based on tabulated third party data. The laboratory certificates are not available to this classification. The number of sampling locations, consistency of analysed parameters, and depth of sampling are such that any assessment for soil waste management based on them should only be considered indicative. Consequently, the assessment made on this data is considered not to be fully representative of the site. Further site investigations and sample analyses will be required to provide a robust assessment in line with industry standard operating procedures.

8.1 Hazardous Waste Assessment

To comply with the European Waste Framework Directive (2008/98/EC), S.I. 233 of 2015 and S.I. 126 of 2011; a hazardous waste assessment was carried out utilising HazWasteOnline software using classification engine WM3.v1.1 (2018). The software enables the user to review the total pollutant content analysis in terms of any Hazardous Properties (as defined in the Regulations) the material may have. The material is assessed against an array of hazardous property thresholds as prescribed in the relevant Regulations and Guidance (Section 1.6).

Of the analyses for the 40 No. samples presented only one sample is assessed as being Hazardous; specifically:

- 0No. (zero) samples have been assessed for total metal soil concentrations for Antinomy Barium, Molybdenum;
- 37 No. samples were assessed for other metal species of which only one sample from 2mbGL in WS5 was hazardous for Lead and Copper;
- 35No. samples were assessed for PAHs of which all were analysed to contain Non hazardous concentrations;
- 15No samples were assessed for TPH(C6-C40) of which 11No.samples had concentrations greater than the limit of detection. As there was no free draining liquid waste reported to be within the soil, and as the concentration in all samples was so low, all these 15No.samples are assessed as containing Non-hazardous concentrations of TPH;
- 19No samples were assessed for BTEXs of which 2No.samples had concentrations greater than the limit of detection. As there was no free draining liquid waste reported to be within the soil, and as the concentration in all samples was so low, all these 19No.samples are assessed as containing Non-hazardous concentrations of BTEXs;
- 19No samples were assessed for PCBs of which no samples reported concentrations above limit of detection. All these 19No.samples are assessed as containing Nonhazardous concentrations of PCBs;

8.2 Waste Acceptance Criteria Assessment

20No. samples were subjected to a leaching test. The leaching results and a selection of total pollutant content results have been compared with the thresholds for acceptance of waste at inert, non-hazardous and hazardous facilities as prescribed in the Landfill Directive. An additional category was included which is based on the integrated Material Solutions Hollywood waste acceptance criteria which are the same as the inert criteria with the exception of total PAHs (100mg/l). The classification categories are outlined in Table 8.1

WASTE CATEGORY	TITLE	CLASSIFICATION CATEGORY	POTENTIAL OUTLET
Category A	Inert Waste Criteria	Reported concentrations less than inert waste guidelines, which are based on waste acceptance criteria set out by the adopted EU Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002). Results found to be non-hazardous using the HazWasteOnline application.	Reuse or recovery subject to Planning and/or Waste Permissions. Inert Landfills e.g. Murphy Gormanston, Roadstone Huntstown. If material constitutes MADE ground acceptance needs to be confirmed in advance with landfill.
Category B	Inert (IMS Acceptance Criteria)	MEHL Acceptance Criteria as laid out in their Waste Licence W0129-02. Reported concentrations less than inert waste guidelines, which are based on waste acceptance criteria set out by the adopted EU Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002) with the exception of PAHs (Total 17 <100mg/kg). Results found to be non-hazardous using the HazWasteOnline application.	Disposal at Integrated Materials Solutions Naul Facility.
Category C1	Non-Haz Criteria	Analytical results greater than Category A criteria but less than non-hazardous waste guidelines, which are based on waste acceptance criteria set out by the adopted EU Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 and Annex II of Directive 1999/31/EC (2002) no limit for TOC . Results found to be non- hazardous using the HazWasteOnline application.	Disposal/Recovery at licensed Landfill (Ballynagran, Knockharley, Drehid). Material can be sent for recovery as engineering material rather than disposed of (no landfill tax).
Category C2	Non-Haz Criteria but with trace asbestos	Results as per C1 but with trace asbestos	Material will need to be disposed of at a licensed landfill if trace asbestos confirmed. If asbestos level is quantifiable then it may have to be disposed in N. Ireland.
Category D	Hazardous	Analytical results found to be hazardous using the HazWasteOnline application.	None in Ireland (export).

NOTE: HazWasteOnline accessed through http://www.hazwasteonline.com. Application developed by One Touch Data Limited based on Regulation (EC) No. 1272/2008: the classification, labelling and packaging of substances and mixtures (CLP) and the latest UK Environment Agency guidance, WM3 v1.1 (2018). The EPA have stated that the HazWasteOnline tool is acceptable for the classification of wastes in Ireland and they have a licence for the application to review results if required.

NOTE: Where material is sent for RECOVERY it does not incur the landfill tax (currently €75/tonne)

NOTE: While waste soil is classified based on the EU Council Decision 2003/33/EC, waste acceptance criteria may vary at each potential Waste Receiver site and further assessment and consultation may be required with the proposed Waste Receiver to confirm suitability for disposal. In terms of permitted sites, further assessment in terms of potential impact to the environment may be required or inert waste comprising made ground may not be acceptable. The Regulations also allow Waste Receivers to agree increased specific limits (e.g. TOC, sulphates) following Risk Assessment, agreement with the EPA and notification of the EC.

The assessment for each sample is contained in the Waste Classification Table which is attached in Table 6 at the end of this report.

While OCSC provide an opinion on which potential Waste Receivers may accept any particular type of material, it is up to the individual Waste Receivers whether they can accept the material (based on results, site acceptance criteria, void space, percentage of non-natural materials within made ground etc).

8.3 Waste Codes

The code for soil and stone material as per the List of Waste is:

• 17 05 04 soil and stone other than those mentioned in 17 05 03

For made ground there is often a portion of the material which is not soil and stone (e.g. brick fragments, concrete, clinker, timber etc). There is no guidance available on what proportion of other materials is acceptable when classifying a single waste stream although a standard

industry guideline of 5% maximum visible contamination with other waste types is often employed. Some facilities have specific limits in their licence (e.g. for non-greenfield sites soil and stone to have <2% contamination with non-natural materials). Therefore it is required to confirm the acceptable levels of contamination of non-natural materials with the Waste Receiver in advance of exporting material to site.

The code for soil and stone which has been classified as hazardous is:

• 17 05 03* soil and stones containing hazardous substances

There are no hazardous waste landfills in Ireland; however, there is one facility licensed to treat hazardous material (Enva Portlaoise). All hazardous material which cannot be treated at Enva is exported to an appropriately permitted facility in the EU via a Waste Broker or direct under Transfrontier Shipment (TFS).

8.4 Summary of Waste Classification to Date

Table 8.2 summarises the waste assessment carried out on site investigation samples (i.e. from boreholes and window samples). Note not all of the 20No. samples were tested for the same parameters.

Table 8.2 Waste Classification Results

	А	В	C1	C2	D
	Inert	Inert (MEHL)	Non- Haz	Non-Haz w/ trace asbestos	Hazardous
No. of samples	0	0	19	0	1

Of the 19 No. samples classifiable as C1 – Non-Hazardous:

- 11No. of 17No. samples showed Total Organic carbon concentration in excess of the Inert limit;
- 10No. of 18No. samples showed PAH (sum of 6) in excess of the Inert limit;
- 5No. of 20No. samples showed dissolved Antinomy in excess of the Inert limit;
- 5No. of 20No. samples showed dissolved Selenium in excess of the Inert limit;
- 2No. of 16No. samples showed dissolved Fluoride in excess of the Inert limit;
- 3No. of 16No. samples showed dissolved Sulphate in excess of the Inert limit;
- 3No. of 16No. samples showed Total Dissolved Solids in excess of the Inert limit;
- 3No. of 20No. samples showed dissolved Arsenic in excess of the Inert limit;
- 2No. of 20No. samples showed dissolved Chromium in excess of the Inert limit;
- 3No. of 20No. samples showed dissolved Molybdenum in excess of the Inert limit;
- 3No. of 20No. samples showed dissolved Nickel in excess of the Inert limit;
- 1No. of 16No. samples showed dissolved Chloride in excess of the Inert limit.

The waste soil assessment made on this limited data set, indicates that the upper part of the soil is probably unlikely to be acceptable at an inert soil disposal or recovery facility. It is expected that excepting the potential for heavy metal hotspots the soil would generally be acceptable at a non-hazardous landfill. The HazWasteOnline Assessment is attached in Appendix C.

8.5 Asbestos

Project No. B909 Issue No.2, 04.10.2019

Of the 40No. samples, 35No. samples were subjected to Asbestos screening. 0No. (zero) samples of those 35No. samples contained detectable asbestos fibres.

8.6 Dig Plans

Only a limited and incomplete set of samples were collected for Waste Acceptance Criteria (WAC) during the 2008 investigation. There is an insufficient sampling density available to create a Dig Plan for the Site. It is strongly recommended that additional site works are undertaken post planning to facilitate the most cost-effective disposal of material and facilitate their acceptance to a licenced waste facility.

It should be noted that the Dig Plans indicate waste soil classifications to enable excavations and assume that the analytical sample results for the key components from that cell are representative for the entire volume of the cell. This is an accepted industry practice and the Contractor will also be informed of the Watching Brief and Discovery Strategy (contained in the Construction Demolition Waste Management Plan (CDWMP) in the event of any unexpected visual or olfactory contamination hot-spots being encountered.

8.7 Contractor Requirements regarding Waste Soil & Groundwater Management

The management of waste soils, hazardous materials and groundwater during construction must comply with all relevant environmental and waste regulations (see Section 1.6 for a non-exhaustive list).

A Soil and Groundwater Management Plan should submitted with the planning applications for the site. This report outlines requirements and recommendations regarding the management of Soil and Groundwater during the construction phase. The designated Contractors will be required to adopt and amend these plans in advance of works starting on site.

The following section outlines requirements and recommendations which the Contractor is required to implement regarding the management of waste soil throughout the project.

8.7.1 Watching Brief

It is possible that unknown isolated hotspot areas which could contain potential contamination (either physical such as waste, underground storage tanks, asbestos or chemical such as hydrocarbons) could be present on site.

Should the contractor encounter any ground conditions which differ from those outlined in this report and/or the ground investigation reports they should suspend works in that area and notify the Client or their representative.

The contractor is required to ensure that no cross-contamination and/or mixing of materials of different waste categories occurs on site.

8.7.2 Hazardous Cells

There are no hazardous cells identified by the site investigations. Should however it become evident for any reason that contamination is or suspected to be present in the soil then the contractor should suspend works in that area, notify the Client or their representative, and request that the dig plans be revised including if appropriate further site investigation.

8.7.3 Export from Site

All excavated soil and wastes requiring export from the site, for recovery or disposal offsite, shall require waste classification. Waste classification shall be carried out by a suitability qualified and experienced person via sampling and analysis following best industry practice and relevant legislation including:

- List of Waste & Determining if Waste is Hazardous or Non-Hazardous (EPA, 2015);
- European Waste Framework Directive (2008/98/EC);

Project No. B909 Issue No.2, 04.10.2019

- Guidance on the classification and assessment of waste, Technical Guidance WM3 (EA et al, 2015);
- EU Council Decision 2003/33/EC and 1999/31/EC (2002);
- European Union (Properties of Waste which render it Hazardous) Regulations 2015 S.I. 233 of 2015; and
- EC Classification, Labelling & Packaging Regulations (No. 1272/2008).

Written confirmation shall be obtained from the proposed Receiver (either under an Article 27 Declaration or Waste Permission) in advance of materials being removed from site. All Waste Receivers and Waste Hauliers shall hold valid and appropriate permissions and shall be preapproved by the Client or their Representative.

Where material is to be exported out of the State it shall be carried out with the agreement of the TFS office in DCC and in accordance with all relevant legislation including:

- Waste Management (Movement of Hazardous Waste) Regulations, 1998 (S.I. No. 147 of 1998);
- The European Communities (Transfrontier Shipment of Hazardous Waste) Regulations, 1988 (S.I. No. 248 of 1988);
- The Basel Convention; and
- European Communities (Shipments of Hazardous Waste exclusively within Ireland) Regulations 2011 (S.I. No. 324 of 2011).

Where material is awaiting classification and/or acceptance by a Waste Receiver it shall either be; left in-situ or; excavated and stockpiled in an appropriate manner, which means, as a minimum, that:

- A temporary storage area shall be designated;
- All stockpiles to be assigned an identifier number;
- Excavation and stockpile formation shall be carried out in a controlled manner to ensure cross-contamination is avoided;
- Non-hazardous and hazardous soil shall be stockpiled only on hard-standing or highgrade plastic to prevent leaching and cross contamination of underlying soils; and
- Stockpiles shall be covered with high-grade plastic sheeting to avoid leachate and dust generation. The plastic sheeting must be adequately weighted on tied down to prevent being blown off by the wind.

Stockpile sampling shall be carried out by a competent person following a documented sampling procedure or recognised standard¹. Once a stockpile has been sampled it is considered complete and no more material shall be added to it.

An excavation/stockpile register shall be maintained showing as a minimum the following information:

• Stockpile number;

Project No. B909

Issue No.2, 04.10.2019

NGINEERS

IRELAND

ACCREDITED EMPLOYER

cpd

- Origin;
- Approximate volume of material;

- Date of creation;
- Date of sampling;
- Description of material;
- Classification;
- Removal date and destination; and
- Photograph.

8.7.4 Monitoring Requirements

The Contractor shall ensure that all waste materials associated with the project are appropriately classified and documented and shall include in the CDWMP appropriate measures such as:

- Arrange for soil samples to be collected either prior to excavation (in situ) and/or from the stockpiles of material before disposal;
- Arrange for samples to be analysed at an accredited laboratory for an appropriate and approved suite of parameters;
- Assess the results against the appropriate criteria to classify the waste; and
- Maintain copies of all sample details, results, assessments and provide copies of same to the Client or its Representatives.

8.7.5 Documentation

Waste disposal shall be documented within a Waste Documentation System which shall be developed by the Contractor within the overall document management system for the works and shall be included in the Construction Management Plan (CMP). The documentation to be maintained in relation to wastes shall include the following:

- Details of all parties involved in the transport of material (including. Hauliers, Agents, Shipping details etc.);
- Details of the Waste Receivers including any intermediary facilities;
- Written confirmation of the acceptance and recovery/disposal of any hazardous waste consignments;
- The tonnages and Waste Code for all waste materials;
- Details of each individual consignment of waste including:
 - Docket number of consignment
 - Date and time;
 - Name of Haulier, vehicle registration and Driver;
 - Volume/weight of consignment;
 - o Description of material and origin (stockpile or cell number);
 - Name of receiving facility;
 - Date and time of arrival at receiving facility; and
 - Docket/weighbridge ticket number from receiving facility;
- All Waste Transfer Forms for hazardous waste;

The Contractor shall maintain an electronic register with the aforementioned details, as well as copies of all dockets from hauliers, and receivers. The Contractor shall provide regular reports to the Client or its representative including copies of the register and dockets if required.

9 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The site currently comprises of a CIE car park, CIE Group buildings, Rolling stock maintenance shed, and part of existing railway lines / sidings. The site had been granted planning in 2012 for a mixed-use development to include commercial offices, leisure centre and residential properties overlying a basement carpark. An outline of what is proposed as part of the new planning permission is outlined in section 1.3. This new planning permission is currently undergoing feasibility study. A summary of the Environmental Site Assessment (ESA) and Generic Quantitative Risk Assessment (GQRA) findings are detailed below:

- The site is bounded by Seville Place and Oriel Hall to the north; Sheriff Street Lower to the south; Oriel Street Upper to the east; and Connolly Station (Protected Structure) to the west, Dublin 1. The River Liffey is 340m to the south of the site while the Royal Canal is 215m east.
- The site was historically infilled, and then used as a Goods Shed. An oil tank can be seen in southern portion of the site on the OSI maps (1888-1913). Adjacent historic activities include tobacco factory, coal yard, Amiens street terminus, bonded stores, and timber yards.
- Historic investigations showed the site's proven geology to be Made Ground over a layer of glacial till, the glacial till layer is composed of sandy GRAVEL embedded among or between a layer of sandy gravelly CLAY. There is a discontinuous layer of sandy SILT with sea shells in the southern end of the site towards Sherriff Street Lower and bedrock was not encountered.
- The conceptual site model identified the receptors as future residential and commercial receptors on-site and offsite human health and environmental receptors.
- The site investigation works carried out included the collection of a number of soil samples, very few samples were analyzed thoroughly to enable the characterization of the material for waste classification purposes.
- A GQRA was undertaken using residential without plant uptake to assess the risk to the residential receptors while commercial GACs were used to assess the risk to future commercial users. This is a conservative assumption given the designed presence of a basement beneath the occupied spaces. Further information will be required in order to refine the Generic Quantitative Risk Assessment (GQRA) as to whether the basement will be occupied or not in order to evaluate the risk more thoroughly.
- Soil analytical results show that the samples collected do not exceed the GAC limit for commercial except for WS9 (1m), WS12 (0.5m) and BH06 (2m), those samples had elevated Polycyclic Aromatic Hydrocarbons (PAHs). If a shallow basement (4m deep) is proposed and it is to be located within the footprint of the above SI points, then, the risk will be removed from a commercial perspective.
- Soil analytical results show that a significant number of samples exceed the GAC limit for residential without plant uptake. However, majority of those samples are from the upper 3mbGL, except for WS1 (5m), WS2 (5m) and BH04 (5-5.3 and 6-6.3m), those samples had elevated metals and/or Polycyclic Aromatic Hydrocarbons (PAHs). If a shallow basement (4m deep) is proposed and it is to be located within the footprint of the above SI points, then, the risk will be removed from a residential perspective.
- The generic prevalent contaminants in the soil across the site are elevated metals (Lead) and PAHs (Dibenzo(ah)anthracene).

- The sampling exercise show that groundwater across the site is impacted by Polycyclic Aromatic Hydrocarbons (PAHs), BTEX, Phenols and Total Petroleum Hydrocarbons, both WS11 and BH03 show concentrations above the SOBRA 2017 GACs for residential. The maximum TPHs and PAHs concentration recorded across the site was 48.32 mg/l and 48.871 µg/l respectively in BH03. The maximum BTEX and Phenols concentrations across the site were 757 µg/l and 0.18 µg/l in WS11 and BH01 respectively.
- No LNAPL (floating hydrocarbon) or DNAPL (settled/sinking hydrocarbon) layer was observed and/or sampled throughout the 2008 study.
- Significantly elevated ground gas (methane and carbon dioxide) was identified during the limited sampling undertaken in 2008. Based on the 2008 results, there is a requirement identifying remedial works for Characterisation Situation 2 (CS2).
- It is anticipated that a number of the pathways of concern such as direct contact from metals will be broken due to the basement construction i.e. the removal of some material as a result of design measures and breaking the pathway by the use of concrete however, an updated GQRA will be required following the completion of any additional site investigation to further characterize the risks associated with the development.
- The number of sampling locations, consistency of analysed parameters, and depth of sampling are such that any assessment for soil waste management based on them should only be considered indicative. Consequently the assessment made on this data is considered not to be fully representative of the site. Further site investigations and sample analyses will be required to provide a robust assessment in line with industry standard operating procedures.

The waste soil assessment made on this limited data set, indicates that the upper part of the soil is

- Potentially predominantly non-hazardous, with a hotspot hazardous nature resultant of lead and copper content. There is not sufficient data to exclude the potential for TPH hotspots.
- Probably unlikely to be acceptable at an inert soil disposal or recovery facility. It is expected that excepting the potential for heavy metal hotspots the soil would generally be acceptable at a non-hazardous landfill.

9.1 Recommendations

It is recommended that the following works are completed:

- A further more robust soil waste classification exercise should be carried out in advance
 of any excavation works to classify the soils according to the relevant statutory
 requirements such as 2003/33/EC. OCSC recommend the site to be divided into 50m
 square grids and a borehole should be drilled in each grid, with samples taken at each
 1m depth intervals across the proposed dig depth. Majority of licenced waste facilities
 require 1No. representative sample for each 1500-2000 tonnes to be disposed of;
- All samples for waste classification purposes should be analysed for a full suite of waste acceptance criteria parameters with an MCERTS/UKAS accredited laboratory.
- It is recommended that due to the large area of the site, the soil waste classification exercise should be carried out prior to the start of the basement excavation in order to

identify suitable licenced waste facilities to accept it, hence avoiding the need to store large soil stockpiles on site;

- It is recommended that if a car park basement is proposed, and that a secant piled wall is be used to form the basement, the depth to bedrock should be proven with the means of an additional site investigation which should/preferably coincide with the waste classification exercise in order to optimise time and/or cost associated with the works;
- Heavy metal contamination identified in the made ground, particularly in the upper layers, has the potential to create an unacceptable risk to human health, depending on the development. This needs to be assessed against the proposed development layout (such as basement depth, footprint and etc) to ensure the design breaks any source pathway receptor linkage identified, particularly in the case if some of the made ground is left on site after development;
- A Vapour Intrusion Risk Assessment (VIRA) was not completed as part of the previous assessment. A VIRA assesses risk to indoor and outdoor air from contamination on site. Given the presence of contamination in the soils and groundwater on site this should be undertaken to ensure that the appropriate mitigation measures are identified and included;
- Due to the presence of a water bearing GRAVEL layer, any dewatering scheme proposed during the basement excavation needs to take into account the elevated concentrations of PAHs, TPHs, Phenols and BTEX in the groundwater across the site. Also, these should be taken account of for the purpose of discharge licence requirements and potential onsite treatment if discharge to sewer is going to occur;
- Significantly elevated ground gas (methane and carbon dioxide) was identified during the limited sampling undertaken in 2008. Within the 2008 report there is a requirement identifying remedial works for Characterisation Situation 2 (CS2). It is recommended that additional gas monitoring is carried out and if required at that time a detailed gas risk assessment is undertaken. This detailed assessment could remove the requirement for mitigation to be incorporated into the development.

Respectfully submitted

on behalf of OCSC Multidisciplinary Consulting Engineers

AHMED THAMER AHMED MSc MIEI EnvEng ENVIRONMNETAL ENGINEER

Project No. B909

Issue No.2, 04.10.2019

NGINEERS

IRELAND

ACCREDITED EMPLOYER

CDC

Leann Burke

ELEANOR BURKE MSc MIEnvSc TECHNICAL PRINCIPAL & DIVISION MANAGER

Figures

Tables

Appendix A Buro Happold Report – 2008

Appendix B Nearby Site Investigation Records

Appendix C HazWasteOnline (HWOL) assessment

Figures

Tables

Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL						Sample ID			WS1			WS2		W	/S3	W	S4
		Residential	Residential	Residential	Open Space	GAC S4UL	GAC S4UL	GAC S4UL		Dep	oth	1.00	3.00	5.00	1.00	3.00	5.00	0.50	4.00	0.50	2.00
		without plant uptake End Use	without plant uptake End Use	without plant uptake End Use	Residential 6%	commercial End Use 1%	Commercial End Use 2.5%	Commercial End Use 6%		Sample	туре	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
CAS Number	Test	1%	2.5%	6%	SOM				Method	Units	LOD										
7440-38-2	Arsenic	40	40	40	79	640	640	640	TM30/PM15	mg/kg	<0.5	33.00	26.00	124.00	18.00	71.00	150.00	18.00	9.00	7.00	15.00
7440-43-9	Cadmium	85	85	85	120	190	190	190	TM30/PM15	mg/kg	<0.1	2.00	1.00	41.00	1.00	1.00	35.00	1.00	1.00	1.00	1.00
7440-47-3	Chromium								TM30/PM15	mg/kg	<0.5	32.00	44.00	41.00	32.00	23.00	44.00	22.00	25.00	34.00	18.00
7440-50-8	Copper	7,100	7,100	7,100	12,000	68,000	68,000	68,000	TM30/PM15	mg/kg	<1	95.00	134.00	222.00	136.00	238.00	292.00	113.00	13.00	47.00	134.00
7439-92-1	Lead*	310	310	310	630	2,300	2,300	2,300	TM30/PM15	mg/kg	<5	650.00	364.00	1402.00	408.00	972.00	1425.00	821.00	183.00	168.00	289.00
7439-97-6	Mercury	56	56	56	16	1,100	1,100	1,100	TM30/PM15	mg/kg	<0.1	<0.3	<0.3	308.00	< 0.3	9.00	320.00	3.00	< 0.3	<1	<1
7440-02-0	Nickel	180	180	180	230	980	980	980	TM30/PM15	mg/kg	<0.7	41.00	61.00	131.00	37.00	64.00	173.00	33.00	18.00	48.00	30.00
1102-49-2	Total Sulphata	430	430	430	1,100	12,000	12,000	12,000	TM50/PM15	mg/kg	<50	2200.00	<0.5 080.00	<0.5 8800.00	280.00	<0.5	<0.5 5300.00	<0.5	<0.5	240.00	530.00
7440-42-8	Water Soluble Boron								TM74/PM32	ma/ka	<0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
7440-66-6	Zinc	40.000	40.000	40.000	81.000	730.000	730.000	730.000	TM30/PM15	ma/ka	<5	334.00	164.00	841.00	259.00	312.00	1124.00	256.00	79.00	207.00	124.00
	PAH MS									00											
91-20-3	Naphthalene	2.3	5.6	13	4,900	190	460	1,100	TM4/PM8	mg/kg	<0.04	0.51	0.059	0.139	0.389	0.23	0.05	0.225	0.068	0.056	0.036
208-96-8	Acenaphthylene	2,900	4,600	6,000	15,000	83,000	97,000	100,000	TM4/PM8	mg/kg	<0.03	0.566	0.063	0.059	0.209	0.168	0.029	0.17	0.316	0.049	0.013
83-32-9	Acenaphthene	3,000	4,700	6,000	15,000	84,000	97,000	100,000	TM4/PM8	mg/kg	<0.05	0.545	0.045	0.048	0.818	0.054	0.036	0.156	0.051	0.037	0.016
86-73-7	Fluorene	2,800	3,800	4,500	9,900	63,000	68,000	71,000	TM4/PM8	mg/kg	<0.04	0.827	0.034	0.029	0.784	0.065	0.019	0.147	0.11	0.036	0.007
85-01-8	Phenanthrene	1,300	1,500	1,500	3,100	22,000	22,000	23,000	TM4/PM8	mg/kg	<0.03	8.748	0.596	1.047	9.251	1.006	0.457	2.073	2.835	0.339	0.221
120-12-7	Anthracene	31,000	35,000	37,000	74,000	520,000	540,000	540,000	TM4/PM8	mg/kg	<0.04	1.899	0.098	0.124	0.905	0.268	0.057	0.338	0.84	0.564	0.068
∠06-44-0 129-00 0	Purene	1,500	1,600	3,600	3,100	23,000	23,000	23,000	TM4/PM8	mg/kg	<0.03	15.473	0.614	0.508	0.391 5 351	0 07/	0.3	2.50	2 672	0.568	0.234
56-55-3	Benzo(a)anthracene	11	14	15	29	170	170	180	TM4/PM8	ma/ka	<0.05	7 249	0.014	0.455	2 467	0.374	0.239	1 236	2.38	0.300	0.247
218-01-9	Chrysene	30	31	32	57	350	350	350	TM4/PM8	mg/kg	<0.02	4.508	0.497	0.542	3.051	0.842	0.292	1.408	2.222	0.46	0.285
BEN-BK-FLUORAN	Benzo(bk)fluoranthene								TM4/PM8	mg/kg	<0.07	7.205	0.743	1.074	4.16	1.513	0.583	2.281	3.591	0.822	0.315
50-32-8	Benzo(a)pyrene	3.2	3.2	3.2	5.7	35	35	36	TM4/PM8	mg/kg	<0.04	3.134	0.385	0.543	2.268	0.765	0.297	1.158	2.097	0.614	0.151
193-39-5	Indeno(123cd)pyrene	45	46	46	82	500	510	510	TM4/PM8	mg/kg	<0.04	3.955	0.271	0.551	1.342	0.534	0.284	1.036	1.235	0.764	0.155
53-70-3	Dibenzo(ah)anthracene	0.31	0.32	0.32	0.58	3.5	3.6	3.6	TM4/PM8	mg/kg	<0.04	3.28	0.242	0.525	1.239	0.483	0.246	0.836	1.081	0.273	0.081
191-24-2	Benzo(ghi)perylene	360	360	360	640	3,900	4,000	4,000	TM4/PM8	mg/kg	<0.04	5.999	0.337	0.708	1.705	0.722	0.378	1.238	1.334	0.729	0.139
191-07-1	Coronene								TM4/PM8	mg/kg	<0.04	1.036	N/A	N/A	0.477	N/A	N/A	N/A	0.342	N/A	N/A
PAH_6_TOTAL	PAH 6 Total								TM4/PM8	mg/kg	<0.22	35.766	2.405	3.384	15.866	4.621	1.842	8.273	8.667	3.493	0.994
PAH_17_TOTAL									TM4/PM8	тg/кg	<0.64	77.419	5.095	0.013	40.007	9.437	3.511	17.121	22.304	0.920	2.203
	1 Alla																				
INTERPRETATION	EPH CWG Interpretation								THEFT	Nono		Possible PAHs	N/A	N/A	Possible PAHs	N/A	NI/A				
	Er in off o intorprotation								IM5/PM16					1 4/ 7 5			DV/A	NI/A	Possible PAHs	N/A	
									TM5/PM16	NULLE						13073	N/A	N/A	Possible PAHs	N/A	N/A
MINOIL_10-40	Mineral Oil (C10-C40)								TM5/PM16 TM5/PM16	mg/kg	<30	<1	N/A	N/A	<1	N/A	N/A	N/A N/A	Possible PAHs	N/A N/A	N/A
MINOIL_10-40	Mineral Oil (C10-C40) <u>TPH CWG</u>								TM5/PM16 TM5/PM16	mg/kg	<30	<1	N/A	N/A	<1	N/A	N/A	N/A N/A	Possible PAHs	N/A N/A	N/A N/A
MINOIL_10-40	Mineral Oil (C10-C40) <u>TPH CWG</u> Aliphatics								TM5/PM16 TM5/PM16	mg/kg	<30	<1	N/A	N/A	<1	N/A	N/A	N/A N/A	Possible PAHs	N/A N/A	N/A
MINOIL_10-40 GTC05C06AL	Mineral Oil (C10-C40) <u>TPH CWG</u> Aliphatics >C5-C6	42	78	160	600,000	3,200	5,900	12,000	TM5/PM16 TM5/PM16 TM36/PM12	mg/kg	<30	<1 N/A	N/A <0.01	N/A N/A	<1 N/A	N/A <0.01	N/A N/A	N/A N/A	Possible PAHs <pre></pre>	N/A N/A <0.01	N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8	42 100	78 230	160 530	600,000 620,000	3,200 7,800	5,900	12,000 40,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12	mg/kg mg/kg	<30 <0.1 <0.1	<1 N/A N/A	N/A <0.01 <0.01	N/A N/A N/A	<1 N/A N/A	N/A <0.01 <0.01	N/A N/A N/A	N/A N/A N/A N/A	Possible PAHs <1 <0.01	N/A N/A <0.01 <0.01	N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10	42 100 27	78 230 65	160 530 150	600,000 620,000 13,000	3,200 7,800 2,000	5,900 17,000 4,800	12,000 40,000 11,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12	mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1	<1 N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01	N/A N/A N/A	<1 N/A N/A N/A	N/A <0.01 <0.01	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01	N/A N/A <0.01 <0.01 <0.01	N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12	42 100 27 130	78 230 65 330	160 530 150 770	600,000 620,000 13,000 13,000	3,200 7,800 2,000 9,700	5,900 17,000 4,800 23,000	12,000 40,000 11,000 47,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2	<1 N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.01	N/A N/A N/A N/A	<1 N/A N/A N/A N/A	<pre></pre>	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A <0.01 <0.01 <0.01 <0.01	N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL CTC46C2AAL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C44_C014	42 100 27 130 1,100	78 230 65 330 2,400	160 530 150 770 4,400	600,000 620,000 13,000 13,000 13,000	3,200 7,800 2,000 9,700 59,000	5,900 17,000 4,800 23,000 82,000	12,000 40,000 11,000 47,000 90,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2 <4	<1 N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1	N/A N/A N/A N/A N/A	<1 N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 \$2.00	N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC12C12AL GTC12C16AL GTC12C16AL GTC16C21AL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C25	42 100 27 130 1,100	78 230 65 330 2,400	160 530 150 770 4,400	600,000 620,000 13,000 13,000 13,000	3,200 7,800 2,000 9,700 59,000	5,900 17,000 4,800 23,000 82,000	12,000 40,000 11,000 47,000 90,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2 <4 <7 <7	<1 N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A	<1 N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00	N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC06C08AL GTC10C12AL GTC10C12AL GTC12C16AL GTC16C21AL GTC21C35AL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35	42 100 27 130 1,100	78 230 65 330 2,400	160 530 150 770 4,400	600,000 620,000 13,000 13,000 13,000	3,200 7,800 2,000 9,700 59,000	5,900 17,000 4,800 23,000 82,000	12,000 40,000 11,000 47,000 90,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7	<1 N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A N/A N/A N/A N/A N/A N/A	NVA <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 280.00	N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC21C35AL GTC05C40AL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40	42 100 27 130 1,100	78 230 65 330 2,400	160 530 150 770 4,400	600,000 620,000 13,000 13,000 13,000	3,200 7,800 2,000 9,700 59,000	5,900 17,000 4,800 23,000 82,000	12,000 40,000 11,000 47,000 90,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/TM36/PM1 2/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <26	<1 N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A	<1 N/A N/A N/A N/A N/A N/A N/A N/A	NVA <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00	N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC16C21AL GTC21C35AL GTC05C40AL	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics	42 100 27 130 1,100	78 230 65 330 2,400	160 530 150 770 4,400	600,000 620,000 13,000 13,000 13,000	3,200 7,800 2,000 9,700 59,000	5,900 17,000 4,800 23,000 82,000	12,000 40,000 11,000 47,000 90,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/TM36/PM1 2/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <26	<1 N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A	<1 <p>N/A N/A N/A N/A N/A N/A N/A N/A N/A</p>	NVA <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00	N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC16C21AL GTC21C35AL GTC05C40AL GTEC05EC07AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C10-C12 >C10-C12 >C12-C16 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7	42 100 27 130 1,100 370 960	78 230 65 330 2,400 690	160 530 150 770 4,400 1,400	600,000 620,000 13,000 13,000 13,000 56,000	3,200 7,800 2,000 9,700 59,000 26,000	5,900 17,000 4,800 23,000 82,000 46,000	12,000 40,000 11,000 47,000 90,000 86,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/TM36/PM12 TM36/PM12 TM36/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <26 <0.1	<1 N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 <1 N/A 	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.01 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC1C21AL GTC21C35AL GTC05C40AL GTEC05EC07AR GTEC07EC08AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-C10	42 100 27 130 1,100 370 860 47	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 56,000	3,200 7,800 2,000 9,700 59,000 26,000 26,000 3,500	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100	12,000 40,000 11,000 47,000 90,000 86,000 180,000 17,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0	<1 N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 <p>N/A N/A N/A</p>	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	N/A	N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC12C35AL GTC05C40AL GTC05C40AL GTEC05EC07AR GTEC07EC08AR GTEC08EC10AR GTEC10EC12AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12	42 100 27 130 1,100 370 860 47 250	78 230 65 330 2,400 	160 530 150 770 4,400 	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000	3,200 7,800 2,000 9,700 59,000 26,000 26,000 3,500 16,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000	12,000 40,000 11,000 47,000 90,000 90,000 86,000 180,000 17,000 34,000	TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2	<1 N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A N	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	N/A	N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC16C21AL GTC05C40AL GTC05C40AL GTEC05EC07AR GTEC07EC08AR GTEC02EC10AR GTEC12EC16AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12 >EC10-EC12	42 100 27 130 1,100 370 860 47 250 1,800	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000 5,000	3,200 7,800 2,000 9,700 59,000 26,000 3,500 16,000 36,000	5,900 17,000 4,800 23,000 82,000 82,000 46,000 110,000 8,100 28,000 37,000	12,000 40,000 11,000 47,000 90,000 90,000 86,000 180,000 17,000 34,000 38,000	TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4	<1 N/A N	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A N	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.01 <0.01 <0.01 <0.01 <0.0 3.63	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC16C21AL GTC05C40AL GTE05EC07AR GTEC05EC07AR GTEC07EC08AR GTEC10EC12AR GTEC12EC16AR GTEC16EC21AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-E10 >EC10-EC12 >EC10-EC12 >EC10-EC12 >EC12-EC16 >EC12-EC16 >EC16-EC21	42 100 27 130 1,100 370 860 47 250 1,800 1,900	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000 5,000 5,000 3,800	3,200 7,800 2,000 9,700 59,000 59,000 26,000 3,500 16,000 3,500 16,000 28,000	5,900 17,000 4,800 23,000 82,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000	12,000 40,000 11,000 47,000 90,000 90,000 86,000 180,000 17,000 34,000 38,000 28,000	TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM16 TM5/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <26	<1 N/A N	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC16C21AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC05EC07AR GTEC0210AR GTEC10EC12AR GTEC12EC16AR GTEC16EC21AR GTEC21EC35AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12 >EC10-EC12 >EC7-EC8 >EC8-EC10 >EC10-EC12 >EC12-EC16 >EC16-EC21 >EC16-EC21 >EC16-EC21	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900	78 230 65 330 2,400 690 1,800 110 590 2,300 1,900 1,900	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 56,000 5,000 5,000 5,000 5,000 3,800	3,200 7,800 2,000 9,700 59,000 59,000 26,000 3,500 16,000 3,500 16,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 28,000	12,000 40,000 11,000 47,000 90,000 90,000 86,000 180,000 17,000 34,000 38,000 28,000 28,000	TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM16 TM5/PM16 TM5/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<1 N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC21C35AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC0212AR GTEC12EC16AR GTEC16EC21AR GTEC16EC21AR GTEC21EC35AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C10-C12 >C10-C12 >C12-C16 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12 >EC1-EC8 >EC8-EC10 >EC1-EC12 >EC1-EC12 >EC12-EC16 >EC16-EC21 >EC16-EC21 >EC21-EC35 Total aromatics C5-40	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900	78 230 65 330 2,400 690 1,800 110 590 2,300 1,900 1,900	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 56,000 5,000 5,000 5,000 5,000 3,800 3,800	3,200 7,800 2,000 9,700 59,000 59,000 26,000 3,500 16,000 3,500 16,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 28,000	12,000 40,000 11,000 47,000 90,000 86,000 180,000 17,000 34,000 38,000 28,000 28,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <26	<1 N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1	N/A <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 0.01 <0.0 3.63 3.62 1.20 8.45	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC16C21AL GTC05C40AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC12EC16AR GTEC12EC16AR GTEC12EC16AR GTEC214C35AR GTEC214C35AR GTEC05EC40AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C10-C12 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12 >EC1-EC8 >EC4-EC10 >EC12-EC16 >EC12-EC16 >EC12-EC16 >EC12-EC16 >EC12-EC16 >EC12-EC16 >EC12-EC16 >EC12-EC16 >EC12-EC16 >EC21-EC35 Total aromatics C5-40 >EC6-EC10	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900	78 230 65 330 2,400 690 1,800 110 590 2,300 1,900 1,900	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 56,000 5,000 5,000 5,000 5,000 3,800 3,800	3,200 7,800 2,000 9,700 59,000 59,000 56,000 3,500 16,000 36,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 28,000	12,000 40,000 11,000 90,000 90,000 86,000 180,000 17,000 34,000 38,000 28,000 28,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <26 <0.1	<1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A 0.00	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.1 <0.1 <0.0 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.1 <0.0 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC21C35AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC0212AR GTEC12EC16AR GTEC16EC21AR GTEC16EC21AR GTEC21EC35AR GTEC05EC40AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC10-EC12 >EC1-EC35 Total aliphatics C5-40	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900	78 230 65 330 2,400 690 1,800 110 590 2,300 1,900 1,900	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000 5,000 5,000 3,800 3,800	3,200 7,800 2,000 9,700 59,000 59,000 26,000 3,500 16,000 36,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 28,000	12,000 40,000 11,000 90,000 90,000 86,000 180,000 17,000 34,000 38,000 28,000 28,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <26 <7 <7 <26	<1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A 0.00	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs	N/A N/A <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC06C08AL GTC00C12AL GTC10C12AL GTC12C16AL GTC12C16AL GTC21C35AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC05EC07AR GTEC06EC10AR GTEC16EC21AR GTEC16EC21AR GTEC16EC21AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C10-C12 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-E10 >EC10-EC12 >EC10-EC12 >EC10-EC12 >EC16-EC21 >EC16-EC21 >EC16-EC21 >EC16-EC21 >EC16-EC21 >EC16-EC21 >EC1-EC16 >EC16-EC21 >EC21-EC35 Total aromatics C5-40 >EC6-EC10 MTBE'	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000 5,000 5,000 3,800 3,800	3,200 7,800 2,000 9,700 59,000 59,000 56,000 3,500 16,000 36,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 28,000 28,000	12,000 40,000 11,000 90,000 90,000 86,000 180,000 17,000 34,000 38,000 28,000 28,000 28,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <26 <7 <7 <26 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <20 <0.1 <0.1 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <20 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	<1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs	N/A N/A <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC06C08AL GTC06C08AL GTC10C12AL GTC12C16AL GTC12C16AL GTC21C35AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC05EC07AR GTEC05EC07AR GTEC05EC10AR GTEC12EC16AR GTEC16EC21AR GTEC16EC21AR GTEC16EC21AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC1-EC12 >EC1-EC12 >EC1-EC12 >EC1-EC12 >EC21-EC35 Total aromatics C5-40 >EC6-EC10 >EC6-EC10 MTBE' Benzene	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900 1,900	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 13,000 56,000 56,000 56,000 5,000 5,000 5,000 3,800 3,800 3,800 3,800	3,200 7,800 2,000 9,700 59,000 59,000 26,000 3,500 16,000 3,500 16,000 28,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 20,000	12,000 40,000 11,000 47,000 90,000 86,000 180,000 17,000 34,000 38,000 28,000 28,000 28,000 28,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.2 <4 <7 <7 <7 <26 <0.1 <0.1 <0.2 <4 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7	<1 N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A 0.01	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 N/A <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC06C08AL GTC10C12AL GTC10C12AL GTC12C16AL GTC16C21AL GTC21C35AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC05EC07AR GTEC0212AR GTEC10EC12AR GTEC10EC12AR GTEC16EC21AR GTEC16EC21AR GTEC16EC21AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC1-EC12 >EC1-EC13 Total aliphatics C5-40 Aromatics >EC7-EC8 >EC7-EC8 >EC10-EC12 >EC10-EC12 >EC16-EC21 >EC21-EC35 Total aromatics C5-40 >EC6-EC10 MTBE ⁻ Benzene Toluene	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900 1,900	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000 5,000 3,800 3,800 3,800 3,800 3,800 3,800 3,800 3,800	3,200 7,800 2,000 9,700 59,000 26,000 3,500 16,000 36,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 28,000 28,000 28,000 28,000 110,000,000	12,000 40,000 11,000 47,000 90,000 30,000 180,000 17,000 34,000 38,000 28,000 28,000 28,000 28,000 28,000 28,000 180,000,000	TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12 TM31/PM12 TM31/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.2 <4 <7 <7 <7 <26 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		N/A <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A Output <td>N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <</td> <td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>N/A N/A N/A</td> <td>Possible PAHs</td> <td>N/A N/A <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.</td> <td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td>	N/A <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	Possible PAHs	N/A N/A <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.1 <0.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC12C16AL GTC05C40AL GTC05C40AL GTEC05EC07AR GTEC05EC07AR GTEC05EC10AR GTEC16EC21AR GTEC16EC21AR GTEC16EC21AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-C7 >EC7-EC8 >EC8-EC10 >EC1-EC12 >EC1-EC12 >EC1-EC12 >EC1-EC12 >EC1-EC13 >EC2+EC16 >EC16-EC21 >EC2+EC16 >EC1-EC12 >EC2+EC16 >EC2+EC16 >EC2+EC10 >EC6-EC10 MTBE' Benzene Toluene Ethylbenzene	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900 1,900 1,900 380 880,000 83,000	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000 5,000 3,800 3,800 3,800 3,800 3,800 3,800 3,800 3,800 3,800 3,800 3,800	3,200 7,800 2,000 9,700 59,000 26,000 3,500 16,000 36,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 37,000 28,000 28,000 28,000 28,000 28,000 110,000,000	12,000 40,000 11,000 90,000 90,000 180,000 17,000 34,000 38,000 28,000 28,000 28,000 28,000 28,000 180,000 180,000 180,000 180,000	TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM36/PM12 TM36/PM12 TM36/PM12 TM36/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM31/PM12 TM31/PM12 TM31/PM12 TM31/PM12 TM31/PM12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.2 <4 <7 <7 <7 <26 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.2 <4 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.2 <4 <4 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		N/A <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <2.41 2.41 2.07 111.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MINOIL_10-40 GTC05C06AL GTC06C08AL GTC08C10AL GTC10C12AL GTC12C16AL GTC12C16AL GTC16C21AL GTC05C40AL GTC05C40AL GTEC05C40AL GTEC05EC07AR GTEC0212AR GTEC12EC16AR GTEC12EC16AR GTEC16EC21AR GTEC16EC21AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR GTEC05EC40AR	Mineral Oil (C10-C40) TPH CWG Aliphatics >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C12-C16 >C16-C21 >C21-C35 Total aliphatics C5-40 Aromatics >C5-EC7 >EC7-EC8 >EC8-EC10 >EC1-EC12 >EC1-EC12 >EC1-EC12 >EC1-EC13 Total aromatics C5-40 >EC6-EC10 >EC6-EC10 >EC6-EC10 Total aromatics C5-40 >EC6-EC10 >EC7-EC8 >EC21-EC16 >EC6-EC10 Benzene	42 100 27 130 1,100 370 860 47 250 1,800 1,900 1,900 1,900 1,900 1,900 380 880,000 83,000 83,000	78 230 65 330 2,400 	160 530 150 770 4,400 1,400 3,900 270 1,200 2,500 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900	600,000 620,000 13,000 13,000 13,000 13,000 13,000 56,000 56,000 5,000 5,000 5,000 5,000 3,800 3	3,200 7,800 2,000 9,700 59,000 26,000 3,500 16,000 3,500 16,000 28,000 28,000 28,000 28,000 28,000 56,000,000 5,700,000 5,900,000	5,900 17,000 4,800 23,000 82,000 46,000 110,000 8,100 28,000 28,000 28,000 28,000 28,000 28,000 28,000 110,000,000 13,000,000 14,000,000	12,000 40,000 11,000 47,000 90,000 90,000 180,000 180,000 17,000 38,000 28,000 28,000 28,000 28,000 28,000 28,000 180,000,000 180,000,000	TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM36/PM12 TM36/PM12 TM36/PM12 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM16 TM5/PM12 TM31/PM12 TM31/PM12 TM31/PM12 TM31/PM12 TM31/PM12	ng/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<30 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.2 <4 <7 <26 <0.1 <0.2 <4 <7 <26 <0.1 <0.2 <4 <7 <26 <0.1 <0.1 <0.2 <4 <7 <7 <26 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <26 <0.1 <0.1 <0.2 <4 <1 <0.1 <0.2 <4 <1 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <26 <0.1 <0.1 <0.2 <4 <1 <0.1 <0.1 <0.2 <4 <7 <7 <7 <7 <7 <7 <7 <26 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<1	N/A <0.01	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<1 N/A O O O O O O O O O	N/A <0.01	N/A N/A	N/A N/A	Possible PAHs <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	N/A N/A <0.01 <0.01 <0.01 <0.01 15.00 62.00 311.00 389.00 <0.01 <0.01 <0.01 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL						Sam	ple ID		WS1		WS2			WS3		WS4	
		Residential	Residential	Residential	Open Space	GAC S4UL	GAC S4UL	GAC S4UL		De	pth	1.00	3.00	5.00	1.00	3.00	5.00	0.50	4.00	0.50	2.00
		uptake End Use	uptake End Use	without plant uptake End Use	Residential 6%	Commercial End Use 1%	Use 2.5%	Commercial End Use 6%	e 6%		е Туре	Soil									
CAS Number	Test	1%	2.5%	6%	00111				Method	Units	LOD										
7012-37-5	PCB 28								TM17/PM8	ug/kg	<5	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35693-99-3	PCB 52								TM17/PM8	ug/kg	<5	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
37680-73-2	PCB 101								TM17/PM8	ug/kg	<5	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
31508-00-6	PCB 118								TM17/PM8	ug/kg	<5	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35065-28-2	PCB 138								TM17/PM8	ug/kg	<5	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35065-27-1	PCB 153								TM17/PM8	ug/kg	<5	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35065-29-3	PCB 180								TM17/PM8	ug/kg	<5	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
PCB_7_CON_TOTAL	Total 7 PCBs [*]	1,000	1,000	1,000		1,000	1,000	1,000	TM17/PM8	ug/kg	<35	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
18540-29-9	Hexavalent Chromium	6	6	6	7.7	33	33	33	TM38/PM20	mg/kg	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
108-95-2	Phenol	750	1,300	2,300		760	1,500	3,200	TM26/PM21	mg/kg	<0.01	N/A	<0.01	<0.01							
MOIST_CONT_DRY	Natural Moisture Content								PM4/PM0	%	<0.1	24.60	25.20	48.30	18.50	30.90	55.60	14.30	21.00	7.80	20.50
57-12-5	Total Cyanide								TM89/PM45	mg/kg	<0.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<1	<
TOC	Total Organic Carbon								TM21/PM24	%	<0.02	7.60	8.30	N/A	5.40	11.20	N/A	N/A	1.70	N/A	3.60
SULPHIDE	Sulphide								TM106/PM45	mg/kg	<10	<5	<5	<5	<5	<5	<5	9.00	16.00	<5	17.00
PH	ph								TM73/PM11	pH units		8.30	8.35	7.61	8.35	8.24	7.72	8.10	7.99	8.71	8.69
	Asbestos Screening								TM65/PM42	None		No Fibres Detected									

Notes:

GACs Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3583. All rights reserved. Averge site specific Soil Organic Matter (SOM) is 8.24%.

*Indicates GAC values from SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination - Policy Companion Document published in 2014. NAD = No Asbestos Detected. NA = Not Available.

EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment published in 2010.

+ GAC S4ULs EC >35- 44 were used in the absense of suitable for use levels for EC>35-40

^ Indicates Intervention Values taken from **DUTCH INTERVENTION 2009**

Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL					1	Sample ID			WS5		W	S6		WS7		WS8	W	/S9
		Residential	Residential	Residential	GAC S4UL Public Open Space	GAC S4UL	GAC S4UL	GAC S4UL		De	pth	0.50	2.00	5.00	1.00	4.00	1.00	3.00	5.00	2.00	0.50	1.00
		without plant	without plant	without plant	Residential 6%	commercial End Use 1%	Commercial End	Commercial End		Sampl	е Туре	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
CAS Number	Test	1%	2.5%	6%	SOM	030 170	030 2.070	030 070	Method	Units	LOD											
7440-38-2	Arsenic	40	40	40	79	640	640	640	TM30/PM15	mg/kg	<0.5	20.00	31.00	9.00	35.00	13.00	11.00	19.00	3.00	26.00	16.00	13.00
7440-43-9	Cadmium	85	85	85	120	190	190	190	TM30/PM15	mg/kg	<0.1	<1	1.00	<1	<1	<1	2.00	1.00	1.00	1.00	1.00	1.00
7440-47-3	Chromium								TM30/PM15	mg/kg	<0.5	20.00	37.00	16.00	33.00	12.00	17.00	21.00	22.00	15.00	20.00	18.00
7440-50-8	Copper	7,100	7,100	7,100	12,000	68,000	68,000	68,000	TM30/PM15	mg/kg	<1	96.00	1179.00	10.00	66.00	22.00	31.00	89.00	19.00	544.00	55.00	77.00
7439-92-1	Lead*	310	310	310	630	2,300	2,300	2,300	TM30/PM15	mg/kg	<5	829.00	2263.00	99.00	606.00	125.00	109.00	739.00	24.00	1118.00	236.00	243.00
7439-97-6	Mercury	56	56	56	16	1,100	1,100	1,100	TM30/PM15	mg/kg	<0.1	<1	<1	<1	<1	<1	<1	16.00	<1	<0.3	<0.3	1.00
7440-02-0	Nickel	180	180	180	230	980	980	980	TM30/PM15	mg/kg	<0.7	38.00	48.00	9.00	66.00	11.00	45.00	47.00	35.00	40.00	25.00	18.00
7782-49-2	Selenium	430	430	430	1,100	12,000	12,000	12,000	TM30/PM15	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<0.5	<0.5
JEL1045	Total Sulphate								TM50/PM29	mg/kg	<50	1900.00	4500.00	2000.00	370.00	1600.00	2300.00	11000.00	360.00	3000.00	3000.00	6100.00
7440-42-8	Water Soluble Boron								TM74/PM32	mg/kg	<0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
7440-66-6	Zinc	40,000	40,000	40,000	81,000	730,000	730,000	730,000	TM30/PM15	mg/kg	<5	120.00	296.00	42.00	142.00	59.00	96.00	122.00	70.00	419.00	116.00	115.00
	PAH MS											0.040										
91-20-3	Naphthalene	2.3	5.6	13	4,900	190	460	1,100	TM4/PM8	mg/kg	<0.04	0.046	0.051	0.077	0.055	0.055	<1	<1	<1	0.037	0.21	0.496
208-96-8	Acenaphthylene	2,900	4,600	6,000	15,000	83,000	97,000	100,000	TM4/PM8	mg/kg	<0.03	0.044	0.013	0.021	0.024	0.013	<1	<1	<1	0.07	0.106	0.228
86-73-7	Fluorene	2,800	4,700	4,500	9,000	63,000	97,000 68,000	71.000	TM4/PWo	mg/kg	<0.05	0.029	0.031	0.045	0.035	0.035	<1	<1	<1	0.034	0.662	2.203
85-01-8	Phenanthrene	1,300	1,500	1,500	3,300	22 000	22 000	23,000	TM4/PM8	ma/ka	<0.04	0.68	0.326	0.554	0.327	0.363	<1	<1	<1	0.352	7 987	20 568
120-12-7	Anthracene	31.000	35.000	37.000	74.000	520.000	540.000	540.000	TM4/PM8	ma/ka	< 0.04	0.175	0.093	0.248	0.09	0.131	<1	<1	<1	0.086	1.073	2.39
206-44-0	Fluoranthene	1,500	1,600	1,600	3,100	23,000	23,000	23,000	TM4/PM8	mg/kg	< 0.03	1.136	0.41	0.553	0.281	0.454	<1	<1	<1	0.179	9.923	20.578
129-00-0	Pyrene	3,700	3,800	3,800	7,400	54,000	54,000	54,000	TM4/PM8	mg/kg	<0.03	0.801	0.364	0.411	0.251	0.318	<1	<1	<1	0.19	9.612	18.2
56-55-3	Benzo(a)anthracene	11	14	15	29	170	170	180	TM4/PM8	mg/kg	<0.06	0.257	0.182	0.154	0.503	0.298	<1	<1	<1	0.191	4.413	8.172
218-01-9	Chrysene	30	31	32	57	350	350	350	TM4/PM8	mg/kg	<0.02	0.569	0.399	0.375	0.34	0.186	<1	<1	<1	0.229	5.104	8.739
BEN-BK-FLUORAN	Benzo(bk)fluoranthene								TM4/PM8	mg/kg	<0.07	0.751	0.796	0.339	0.535	0.218	<1	<1	<1	0.498	7.529	12.56
50-32-8	Benzo(a)pyrene	3.2	3.2	3.2	5.7	35	35	36	TM4/PM8	mg/kg	<0.04	0.428	0.406	0.213	0.277	0.124	<1	<1	<1	0.311	4.355	7.209
193-39-5	Indeno(123cd)pyrene	45	46	46	82	500	510	510	TM4/PM8	mg/kg	<0.04	0.278	0.434	0.122	0.272	0.077	<1	<1	<1	0.297	2.67	4.377
53-70-3	Dibenzo(ah)anthracene	0.31	0.32	0.32	0.58	3.5	3.6	3.6	TM4/PM8	mg/kg	<0.04	0.16	0.22	0.091	0.186	0.04	<1	<1	<1	0.36	2.137	3.874
191-24-2	Benzo(ghi)perylene	360	360	360	640	3,900	4,000	4,000	TM4/PM8	mg/kg	<0.04	0.279	0.429	0.127	0.247	0.079	<1	<1	<1	0.548	3.446	5.605
191-07-1	Coronene								TM4/PM8	mg/kg	< 0.04	N/A	0.196	N/A	N/A	0.04	N/A	N/A	N/A	0.198	N/A	N/A
PAH_6_TOTAL	PAH 6 Total								TM4/PM8	mg/kg	<0.22	2.872	2.475	1.354	1.612	0.952	<1	<1	<1	1.833	27.923	50.329
PAH_17_TOTAL									TM4/PM8	mg/kg	<0.64	0.073	4.300	3.432	3.447	2.506	N/A	n/A	IN/A	3.029	60.437	110.02
	1 Allo																			Possible		
INTERPRETATION	FPH CWG Interpretation								TM5/PM16	None		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	natural	N/A	N/A
																				occuring		
MINOIL 10-40	Mineral Oil (C10-C40)								TM5/PM16	ma/ka	<30	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
	TPH CWG									00												
	Aliphatics																					
GTC05C06AL	>C5-C6	42	78	160	600,000	3,200	5,900	12,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	<0.01	N/A	<0.01	N/A	N/A
GTC06C08AL	>C6-C8	100	230	530	620,000	7,800	17,000	40,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	<0.01	N/A	<0.01	N/A	N/A
GTC08C10AL	>C8-C10	27	65	150	13,000	2,000	4,800	11,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	<0.01	N/A	<0.01	N/A	N/A
GTC10C12AL	>C10-C12	130	330	770	13,000	9,700	23,000	47,000	TM5/PM16	mg/kg	<0.2	N/A	N/A	N/A	N/A	<0.01	N/A	<0.01	N/A	<0.01	N/A	N/A
GTC12C16AL	>C12-C16	1,100	2,400	4,400	13,000	59,000	82,000	90,000	TM5/PM16	mg/kg	<4	N/A	N/A	N/A	N/A	<0.1	N/A	<0.1	N/A	<0.1	N/A	N/A
GTC16C21AL	>C16-C21								TM5/PM16	mg/kg	<7	N/A	N/A	N/A	N/A	<0.1	N/A	<0.1	N/A	<0.1	N/A	N/A
GTC21C35AL	>C21-C35								TM5/PM16	mg/kg	<7	N/A	N/A	N/A	N/A	<0.1	N/A	<0.1	N/A	<0.1	N/A	N/A
GTC05C40AL	Total aliphatics C5-40								2/PM16	mg/kg	<26	N/A	N/A	N/A	N/A	<0.1	N/A	<0.1	N/A	<0.1	N/A	N/A
	Aromatics																					
GTEC05EC07AR	>C5-EC7	370	690	1,400	56,000	26,000	46,000	86,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	<0.01	N/A	<0.01	N/A	N/A
GTEC07EC08AR	>EC7-EC8	860	1,800	3,900	56,000	56,000	110,000	180,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	<0.01	N/A	<0.01	N/A	N/A
GTEC08EC10AR	>EC8-EC10	47	110	270	5,000	3,500	8,100	17,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	<0.01	N/A	<0.01	N/A	N/A
GTEC10EC12AR	>EC10-EC12	250	590	1,200	5,000	16,000	28,000	34,000	TM5/PM16	mg/kg	<0.2	N/A	N/A	N/A	N/A	<0.01	N/A	< 0.01	N/A	<0.01	N/A	N/A
GTEC12EC16AR	>EC12-EC16	1,800	2,300	2,500	5,000	36,000	37,000	38,000	TM5/PM16	mg/kg	<4	N/A	N/A	N/A	N/A	1.40	N/A	<0.1	N/A	0.99	N/A	N/A
GTEC16EC2TAR	>EC16-EC21	1,900	1,900	1,900	3,800	28,000	28,000	28,000	TM5/PM16	mg/kg	</td <td>IN/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>0.60</td> <td>N/A</td> <td><0.1</td> <td>N/A</td> <td>0.01</td> <td>N/A</td> <td>N/A</td>	IN/A	N/A	N/A	N/A	0.60	N/A	<0.1	N/A	0.01	N/A	N/A
OTECOTECODAR	2E021-E030	1,900	1,900	1,900	3,000	20,000	20,000	20,000	TM5/TM36/PM1	my/ky	</td <td>IN/A</td> <td>IN/A</td> <td>IN/A</td> <td>1N/A</td> <td>0.12</td> <td>1N/<i>P</i>\</td> <td><u. i<="" td=""><td>IN/A</td><td>0.91</td><td>IN/ PA</td><td>IN/A</td></u.></td>	IN/A	IN/A	IN/A	1N/A	0.12	1N/ <i>P</i> \	<u. i<="" td=""><td>IN/A</td><td>0.91</td><td>IN/ PA</td><td>IN/A</td></u.>	IN/A	0.91	IN/ PA	IN/A
GTEC05EC40AR	Total aromatics C5-40								2/PM16	mg/kg	<26	N/A	N/A	N/A	N/A	2.00	N/A	<0.1	N/A	3.11	N/A	N/A
GTEC06EC10AR	>EC6-EC10								TM36/PM12	mg/kg	<0.1	N/A	<1	N/A	N/A	49.00	N/A	N/A	N/A	108.00	N/A	N/A
1634-04-4	MTBE *							24,000	TM31/PM12	mg/kg	<0.05	N/A	N/A	N/A	N/A	< 0.01	N/A	<0.01	N/A	< 0.01	N/A	N/A
71-43-2	Benzene	380	700	1,400	73,000	27,000	47,000	90,000	TM31/PM12	mg/kg	<0.05	N/A	< 0.01	N/A	N/A	< 0.01	N/A	<0.01	N/A	< 0.01	N/A	N/A
108-88-3	Ioluene	880,000	1,900,000	3,900,000	56,000,000	56,000,000	110,000,000	180,000,000	IM31/PM12	mg/kg	<0.05	IN/A	<0.01	IN/A	IN/A	<0.01	IN/A	<0.01	N/A	<0.01	N/A	IN/A
1111-41-4	Ethylbonzono	92 000	100.000	490.000	25,000,000	5 700 000	12 000 000	27 000 000	TM21/DM40	ma/ka	<0.0E	NI/A	-0.04	NI/A	NI/A	-0.04	NI/A	-0.04	N1/A	-0.04	N I / A	N.L.C.A.
	Ethylbenzene	83,000	190,000	480,000	25,000,000	5,700,000	13,000,000	27,000,000	TM31/PM12	mg/kg	<0.05	N/A	< 0.01	N/A	N/A	< 0.01	N/A	< 0.01	N/A	< 0.01	N/A	N/A N/A
XYLENE	Ethylbenzene Xylene	83,000 79,000	190,000 180,000	480,000 430,000	25,000,000 43,000,000	5,700,000 5,900,000	13,000,000 14,000,000	27,000,000 30,000,000	TM31/PM12 TM31/PM12	mg/kg mg/kg	<0.05 <0.05	N/A N/A	<0.01 <0.01	N/A N/A	N/A N/A	<0.01 <0.01	N/A N/A	<0.01 <0.01	N/A N/A	<0.01 <0.01	N/A N/A	N/A N/A

Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL						Sample ID			WS5		W	S6	WS7			WS8	WS	S9
		Residential	Residential	Residential	Open Space	GAC S4UL	GAC S4UL	GAC S4UL		Dep	pth	0.50	2.00	5.00	1.00	4.00	1.00	3.00	5.00	2.00	0.50	1.00
		uptake End Use	uptake End Use	uptake End Use	Residential 6%	Use 1%	Use 2.5%	Use 6%		Sample	е Туре	Soil										
CAS Number	Test	1%	2.5%	6%	001				Method	Units	LOD											
7012-37-5	PCB 28								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35693-99-3	PCB 52								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
37680-73-2	PCB 101								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
31508-00-6	PCB 118								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35065-28-2	PCB 138								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35065-27-1	PCB 153								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
35065-29-3	PCB 180								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<1	N/A	N/A
PCB_7_CON_TOTAL	Total 7 PCBs *	1,000	1,000	1,000		1,000	1,000	1,000	TM17/PM8	ug/kg	<35	N/A	<1	N/A	N/A	<1	N/A	N/A	N/A	<	N/A	N/A
18540-29-9	Hexavalent Chromium	6	6	6	7.7	33	33	33	TM38/PM20	mg/kg	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
108-95-2	Phenol	750	1,300	2,300		760	1,500	3,200	TM26/PM21	mg/kg	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	N/A	N/A	N/A
MOIST_CONT_DRY	Natural Moisture Content								PM4/PM0	%	<0.1	15.10	23.10	19.70	33.50	21.00	10.90	22.50	13.80	25.20	20.30	20.50
57-12-5	Total Cyanide								TM89/PM45	mg/kg	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<2.5	<2.5
TOC	Total Organic Carbon								TM21/PM24	%	<0.02	N/A	5.30	N/A	7.50	1.60	N/A	N/A	N/A	8.30	N/A	N/A
SULPHIDE	Sulphide								TM106/PM45	mg/kg	<10	10.00	35.00	541.00	8.00	47.00	<5	<5	11.00	<5	<5	<5
PH	ph								TM73/PM11	pH units		8.51	8.32	8.41	8.66	8.04	8.13	7.71	8.65	8.32	8.04	8.16
	Asbestos Screening								TM65/PM42	None		No Fibres Detected										

Notes:

GACs Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3583. All rights reserved. Averge site specific Soil Organic Matter (SOM) is

8.24%.

*Indicates GAC values from SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination - Policy Companion Document published in 2014 NAD = No Asbestos Detected. NA = Not Available.

EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment published in 2010.

+ GAC S4ULs EC >35- 44 were used in the absense of suitable for use levels for EC>35-40

^ Indicates Intervention Values taken from **DUTCH INTERVENTION 2009**
Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL						Sam	ple ID		WS11		WS	512	BH1		BH3	
		Residential	Residential	Residential	Open Space	GAC S4UL	GAC S4UL	GAC S4UL		De	pth	0.50	2.00	3.00	0.50	1.00	2.00	2.0	0.50	1.00
		uptake End Use	uptake End Use	uptake End Use	Residential 6%	Use 1%	Use 2.5%	Use 6%		Sampl	le Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
CAS Number	Test	1%	2.5%	6%	SOM				Method	Units	LOD									
7440-38-2	Arsenic	40	40	40	79	640	640	640	TM30/PM15	mg/kg	<0.5	N/A	7.00	3.00	27.00	27.00	11.00	8.00	30.00	N/A
7440-43-9	Cadmium	85	85	85	120	190	190	190	TM30/PM15	mg/kg	<0.1	N/A	<1	2.00	1.00	1.00	<0.5	<0.5	<0.5	N/A
7440-47-3	Chromium								TM30/PM15	mg/kg	<0.5	N/A	11.00	32.00	22.00	19.00	10.00	16.00	16.00	N/A
7440-50-8	Copper	7,100	7,100	7,100	12,000	68,000	68,000	68,000	TM30/PM15	mg/kg	<1	N/A	14.00	26.00	306.00	610.00	28.00	7.00	91.00	N/A
7439-92-1	Lead*	310	310	310	630	2,300	2,300	2,300	TM30/PM15	mg/kg	<5	N/A	77.00	25.00	481.00	937.00	362.00	30.00	466.00	N/A
7439-97-6	Mercury	56	56	56	16	1,100	1,100	1,100	TM30/PM15	mg/kg	<0.1	N/A	<1	<1	<0.3	<0.3	<0.3	<0.3	<0.3	N/A
7440-02-0	Nickel	180	180	180	230	980	980	980	TM30/PM15	mg/kg	<0.7	N/A	9.00	51.00	60.00	38.00	14.00	16.00	46.00	N/A
7782-49-2	Selenium	430	430	430	1,100	12,000	12,000	12,000	TM30/PM15	mg/kg	<1	N/A	<1	<1	<0.5	< 0.5	<0.5	< 0.5	< 0.5	N/A
JEL1045	Total Sulphate								TM50/PM29	mg/kg	<50	N/A	790.00	210.00	1600.00	2300.00	1500.00	560.00	1800.00	N/A
7440-42-8	Water Soluble Boron	40.000	40.000	40.000	81.000	720.000	720.000	720.000	TM20/DM45	mg/kg	<0.1	N/A	<1	105.00	222.00	228.00	<1 62.00	50.00	08.00	N/A
7440-00-0	PAH MS	40,000	40,000	40,000	01,000	730,000	730,000	730,000	1100/11010	iiig/kg	~	19/73	40.00	103.00	200.00	220.00	02.00	33.00	50.00	130773
91-20-3	Naphthalene	2.3	5.6	13	4.900	190	460	1.100	TM4/PM8	ma/ka	< 0.04	N/A	0.351	N/A	0.056	0.047	0.075	<1	0.077	0.007
208-96-8	Acenaphthylene	2.900	4.600	6.000	15.000	83.000	97.000	100.000	TM4/PM8	ma/ka	< 0.03	N/A	0.206	N/A	0.08	0.026	0.019	<1	0.065	0.003
83-32-9	Acenaphthene	3,000	4,700	6,000	15,000	84,000	97,000	100,000	TM4/PM8	mg/kg	< 0.05	N/A	0.337	N/A	0.068	0.083	0.066	<1	0.038	0.019
86-73-7	Fluorene	2,800	3,800	4,500	9,900	63,000	68,000	71,000	TM4/PM8	mg/kg	<0.04	N/A	0.721	N/A	0.062	0.041	0.105	<1	0.045	0.002
85-01-8	Phenanthrene	1,300	1,500	1,500	3,100	22,000	22,000	23,000	TM4/PM8	mg/kg	<0.03	N/A	2.456	N/A	0.02	0.503	0.559	<1	0.618	0.052
120-12-7	Anthracene	31,000	35,000	37,000	74,000	520,000	540,000	540,000	TM4/PM8	mg/kg	<0.04	N/A	0.65	N/A	0.149	0.141	0.179	<1	0.251	0.012
206-44-0	Fluoranthene	1,500	1,600	1,600	3,100	23,000	23,000	23,000	TM4/PM8	mg/kg	<0.03	N/A	2.634	N/A	0.505	0.566	0.393	<1	0.76	0.032
129-00-0	Pyrene	3,700	3,800	3,800	7,400	54,000	54,000	54,000	TM4/PM8	mg/kg	<0.03	N/A	2.395	N/A	0.36	0.52	0.298	<1	0.764	0.027
56-55-3	Benzo(a)anthracene	11	14	15	29	170	170	180	TM4/PM8	mg/kg	<0.06	N/A	2.016	N/A	0.457	0.537	0.179	<1	0.247	0.032
218-01-9	Chrysene	30	31	32	57	350	350	350	TM4/PM8	mg/kg	<0.02	N/A	1.52	N/A	0.604	0.555	0.147	<1	0.624	0.036
BEN-BK-FLUORAN	Benzo(bk)fluoranthene								TM4/PM8	mg/kg	<0.07	N/A	1.538	N/A	1.007	0.537	0.181	<1	0.937	0.036
50-32-8	Benzo(a)pyrene	3.2	3.2	3.2	5.7	35	35	36	TM4/PM8	mg/kg	<0.04	N/A	0.828	N/A	0.544	0.385	0.135	<1	0.46	0.007
193-39-5	Indeno(123cd)pyrene	45	46	46	82	500	510	510	TM4/PM8	mg/kg	<0.04	N/A	0.539	N/A	0.387	0.179	0.061	<1	0.381	0.014
53-70-3	Dibenzo(ah)anthracene	0.31	0.32	0.32	0.58	3.5	3.6	3.6	TM4/PM8	mg/kg	<0.04	N/A	0.363	N/A	0.317	0.116	0.051	<1	0.398	0.006
191-24-2	Gerenone Coronone	360	300	360	640	3,900	4,000	4,000		mg/kg	<0.04	N/A	0.535	IN/A	0.537	0.218	0.095	<1	0.701	0.022
	DAH 6 Total									mg/kg	<0.04	N/A	0.205	N/A	2.08	1 885	0.865	N/A	3 230	0.000
PAH_0_TOTAL	PAH 17 Total								TM4/PM8	ma/ka	<0.22	N/A	17 294	N/A	5 153	4 454	2 543	N/A	6.366	0.315
	PAHs										40.01			1 4/ 7 4	0.100		21010		0.000	0.010
INTERPRETATION	EPH CWG Interpretation								TM5/PM16	None		N/A	Possible highly degraded Diesel	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MINOIL_10-40	Mineral Oil (C10-C40)								TM5/PM16	mg/kg	<30	N/A	217.00	N/A	N/A	N/A	N/A	N/A	N/A	<1
	Aliphatics																			
GTC05C06AI	>C5-C6	42	78	160	600.000	3 200	5 900	12 000	TM36/PM12	ma/ka	<0.1	<0.01	1.00	0.30	N/A	<0.01	N/A	<0.01	N/A	N/A
GTC06C08AL	>C6-C8	100	230	530	620.000	7.800	17.000	40.000	TM36/PM12	ma/ka	<0.1	< 0.01	6.00	3.00	N/A	< 0.01	N/A	< 0.01	N/A	N/A
GTC08C10AL	>C8-C10	27	65	150	13,000	2,000	4,800	11,000	TM36/PM12	mg/kg	<0.1	< 0.01	4.00	3.00	N/A	< 0.01	N/A	< 0.01	N/A	N/A
GTC10C12AL	>C10-C12	130	330	770	13,000	9,700	23,000	47,000	TM5/PM16	mg/kg	<0.2	< 0.01	7.00	8.00	N/A	< 0.01	N/A	<0.01	N/A	N/A
GTC12C16AL	>C12-C16	1,100	2,400	4,400	13,000	59,000	82,000	90,000	TM5/PM16	mg/kg	<4	<0.1	194.00	<0.1	N/A	<0.1	N/A	<0.1	N/A	N/A
GTC16C21AL	>C16-C21								TM5/PM16	mg/kg	<7	<0.1	301.00	<0.1	N/A	<0.1	N/A	<0.1	N/A	N/A
GTC21C35AL	>C21-C35								TM5/PM16	mg/kg	<7	<0.1	88.00	<0.1	N/A	<0.1	N/A	<0.1	N/A	N/A
GTC05C40AL	Total aliphatics C5-40								TM5/TM36/PM1 2/PM16	mg/kg	<26	<0.1	601.00	14.00	N/A	<0.1	N/A	<0.1	N/A	N/A
	Aromatics								2/FIVI10											
GTEC05EC07AR	>C5-EC7	370	690	1,400	56,000	26,000	46,000	86,000	TM36/PM12	mg/kg	<0.1	<0.01	0.02	< 0.01	N/A	<0.01	N/A	< 0.01	N/A	N/A
GTEC07EC08AR	>EC7-EC8	860	1,800	3,900	56,000	56,000	110,000	180,000	TM36/PM12	mg/kg	<0.1	< 0.01	0.10	< 0.01	N/A	<0.01	N/A	< 0.01	N/A	N/A
GTEC08EC10AR	>EC8-EC10	47	110	270	5,000	3,500	8,100	17,000	TM36/PM12	mg/kg	<0.1	< 0.01	6.38	4.00	N/A	<0.01	N/A	< 0.01	N/A	N/A
GTEC10EC12AR	>EC10-EC12	250	590	1,200	5,000	16,000	28,000	34,000	TM5/PM16	mg/kg	<0.2	<0.01	11.00	12.00	N/A	<0.01	N/A	<0.01	N/A	N/A
GTEC12EC16AR	>EC12-EC16	1,800	2,300	2,500	5,000	36,000	37,000	38,000	TM5/PM16	mg/kg	<4	286.00	9.40	<0.1	N/A	1.88	N/A	<0.1	N/A	N/A
GTEC16EC21AR	>EC16-EC21	1,900	1,900	1,900	3,800	28,000	28,000	28,000	TM5/PM16	mg/kg	<7	73.00	5.60	<0.1	N/A	1.81	N/A	<0.1	N/A	N/A
GTEC21EC35AR	>EC21-EC35	1,900	1,900	1,900	3,800	28,000	28,000	28,000	TM5/PM16	mg/kg	<7	37.00	0,9	<0.1	N/A	0.33	N/A	<0.1	N/A	N/A
GTEC05EC40AR	Total aromatics C5-40								TM5/TM36/PM1 2/PM16	mg/kg	<26	396.00	33.00	17.00	N/A	4.02	N/A	<0.1	N/A	N/A
GTEC06EC10AR	>EC6-EC10								TM36/PM12	mg/kg	<0.1	N/A	1086.00	N/A	N/A	N/A	N/A	N/A	N/A	<1
1634-04-4	MTBE							24,000	TM31/PM12	mg/kg	<0.05	< 0.01	0.14	< 0.01	N/A	<0.01	N/A	< 0.01	N/A	N/A
71-43-2	Benzene	380	700	1,400	73,000	27,000	47,000	90,000	TM31/PM12	mg/kg	< 0.05	< 0.01	0.02	< 0.01	N/A	<0.01	N/A	< 0.01	N/A	< 0.01
108-88-3	Toluene	880,000	1,900,000	3,900,000	56,000,000	56,000,000	110,000,000	180,000,000	TM31/PM12	mg/kg	<0.05	<0.01	0.10	<0.01	N/A	<0.01	N/A	<0.01	N/A	<0.01
100-41-4	Ethylbenzene	83,000	190,000	480,000	25,000,000	5,700,000	13,000,000	27,000,000	TM31/PM12	mg/kg	<0.05	<0.01	0.04	0.02	N/A	<0.01	N/A	<0.01	N/A	<0.01
XYLENE	Xylene	79,000	180,000	430,000	43,000,000	5,900,000	14,000,000	30,000,000	TM31/PM12	mg/kg	<0.05	<0.01	0.17	0.05	N/A	<0.01	N/A	<0.01	N/A	<0.01

Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL						Sam	ple ID		WS11		WS	S12	BH1		BH3	
		Residential	Residential	Residential	Open Space	GAC S4UL	GAC S4UL	GAC S4UL		De	pth	0.50	2.00	3.00	0.50	1.00	2.00	2.0	0.50	1.00
		uptake End Use	uptake End Use	uptake End Use	Residential 6%	Use 1%	Use 2.5%	Use 6%		Sampl	е Туре	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
CAS Number	Test	1%	2.5%	6%	001				Method	Units	LOD									
7012-37-5	PCB 28								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
35693-99-3	PCB 52								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
37680-73-2	PCB 101								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
31508-00-6	PCB 118								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
35065-28-2	PCB 138								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
35065-27-1	PCB 153								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
35065-29-3	PCB 180								TM17/PM8	ug/kg	<5	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
PCB_7_CON_TOTAL	Total 7 PCBs [*]	1,000	1,000	1,000		1,000	1,000	1,000	TM17/PM8	ug/kg	<35	N/A	<1	N/A	N/A	N/A	N/A	N/A	N/A	<1
18540-29-9	Hexavalent Chromium	6	6	6	7.7	33	33	33	TM38/PM20	mg/kg	<0.01	N/A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A
108-95-2	Phenol	750	1,300	2,300		760	1,500	3,200	TM26/PM21	mg/kg	<0.01	N/A	< 0.01	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MOIST_CONT_DRY	Natural Moisture Content								PM4/PM0	%	<0.1	8.20	23.80	10.70	21.70	14.00	33.30	23.50	24.30	24.40
57-12-5	Total Cyanide								TM89/PM45	mg/kg	<0.5	N/A	<1	<1	<2.5	<2.5	<1	<1	<1	N/A
TOC	Total Organic Carbon								TM21/PM24	%	<0.02	N/A	2.20	N/A	N/A	N/A	N/A	1.50	N/A	1.10
SULPHIDE	Sulphide								TM106/PM45	mg/kg	<10	N/A	189.00	12.00	<5	8.00	93.00	<5	6.00	N/A
PH	ph								TM73/PM11	pH units		N/A	8.67	8.70	8.21	8.01	8.63	8.93	8.98	N/A
	Asbestos Screening								TM65/PM42	None		N/A	No Fibres Detected	N/A						

Notes:

GACs Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3583. All rights reserved. Averge site specific Soil Organic Matter (SOM) is

8.24%.

*Indicates GAC values from SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination - Policy Companion Document published in 2014 NAD = No Asbestos Detected. NA = Not Available.

EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment published in 2010.

+ GAC S4ULs EC >35- 44 were used in the absense of suitable for use levels for EC>35-40

^ Indicates Intervention Values taken from **DUTCH INTERVENTION 2009**

Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL	GAC SALIL Bublic					Samp	le ID		BH	14		BH5	В	H6		BH7	
		Residential without plant	Residential without plant	Residential	Open Space	GAC S4UL	GAC S4UL	GAC S4UL		Dep	oth	1.00	5.0-5.3	6.0-6.3	7.20	2.00	1.00	2.00	0.5	3	6.50
		uptake End Use	uptake End Use	uptake End Use	Residential 6%	Use 1%	Use 2.5%	Use 6%		Sample	е Туре	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
CAS Number	Test	1%	2.5%	6%	SOM				Method	Units	LOD										
7440-38-2	Arsenic	40	40	40	79	640	640	640	TM30/PM15	mg/kg	<0.5	26.00	18.00	22.00	17.00	15.00	15.00	27.00	27.00	N/A	8.00
7440-43-9	Cadmium	85	85	85	120	190	190	190	TM30/PM15	mg/kg	<0.1	1.00	1.00	1.00	1.00	<0.5	1.00	1.00	<1	N/A	1.00
7440-47-3	Chromium								TM30/PM15	mg/kg	<0.5	28.00	14.00	17.00	16.00	30.00	15.00	20.00	23.00	N/A	17.00
7440-50-8	Copper	7,100	7,100	7,100	12,000	68,000	68,000	68,000	TM30/PM15	mg/kg	<1	237.00	270.00	250.00	42.00	145.00	42.00	99.00	29.00	N/A	18.00
7439-92-1	Lead*	310	310	310	630	2,300	2,300	2,300	TM30/PM15	mg/kg	<5	392.00	430.00	480.00	222.00	602.00	439.00	1187.00	183.00	N/A	22.00
7439-97-6	Mercury	56	56	56	16	1,100	1,100	1,100	TM30/PM15	mg/kg	<0.1	<0.3	1.50	2.10	<0.3	<0.3	<0.3	5.00	<1	N/A	<1
7440-02-0	Nickel	180	180	180	230	980	980	980	TM30/PM15	mg/kg	<0.7	40.00	29.00	40.00	26.00	29.00	18.00	35.00	16.00	N/A	28.00
//82-49-2	Selenium Total Sulphata	430	430	430	1,100	12,000	12,000	12,000	TM50/PM15	mg/kg	<1	2000.00	<3 N/A	<3 NI/A	<0.5	<0.5	<0.5	<0.5	1000.00	N/A N/A	<1 620.00
7440-42-8	Water Soluble Boron								TM74/PM32	mg/kg	<0.1	2000.00	N/A	= 1N/A	1300.00	5600.00	500.00	1700.00	1000.00	N/A	<1
7440-66-6	Zinc	40.000	40.000	40.000	81.000	730.000	730.000	730.000	TM30/PM15	ma/ka	<5	153.00	260.00	240.00	95.00	103.00	91.00	139.00	118.00	N/A	72.00
	PAH MS		.,	.,						55	-										
91-20-3	Naphthalene	2.3	5.6	13	4,900	190	460	1,100	TM4/PM8	mg/kg	<0.04	0.072	N/A	N/A	0.039	0.074	0.108	5.377	0.002	N/A	<1
208-96-8	Acenaphthylene	2,900	4,600	6,000	15,000	83,000	97,000	100,000	TM4/PM8	mg/kg	<0.03	0.101	N/A	N/A	0.009	0.044	0.201	2.351	0.004	N/A	<1
83-32-9	Acenaphthene	3,000	4,700	6,000	15,000	84,000	97,000	100,000	TM4/PM8	mg/kg	<0.05	0.054	N/A	N/A	0.027	0.03	0.079	0.994	0.016	N/A	<1
86-73-7	Fluorene	2,800	3,800	4,500	9,900	63,000	68,000	71,000	TM4/PM8	mg/kg	<0.04	0.068	N/A	N/A	0.025	0.021	0.118	3.38	0.001	N/A	<1
85-01-8	Phenanthrene	1,300	1,500	1,500	3,100	22,000	22,000	23,000	TM4/PM8	mg/kg	<0.03	1.062	N/A	N/A	0.34	0.49	1.969	27.765	0.005	N/A	<1
120-12-7	Anthracene	31,000	35,000	37,000	74,000	520,000	540,000	540,000	TM4/PM8	mg/kg	<0.04	0.26	N/A	N/A	0.033	0.19	0.699	10.691	0.002	N/A	<1
206-44-0	Fluoranthene	1,500	1,600	1,600	3,100	23,000	23,000	23,000	TM4/PM8	mg/kg	<0.03	1.407	N/A	N/A	0.113	0.879	3.233	34.308	0.078	N/A	<1
129-00-0	Pyrene	3,700	3,800	3,800	7,400	54,000	54,000	54,000	TM4/PM8	mg/kg	<0.03	1.379	N/A	N/A	0.092	0.941	2.372	28.495	0.153	N/A	<1
219 01 0	Benzo(a)anthracene	11	14	15	29	1/0	1/0	180	TM4/PM8	mg/kg	<0.06	0.86	N/A	IN/A	0.11/	1.257	3.324	21.106	0.08	N/A	<1
BEN-BK-FLUORAN	Benzo(bk)fluoranthene	30	31	32	57	- 350	350	350	TM4/PM8	mg/kg	<0.02	1.808	N/A	NI/A	0.171	0.020	1.007	28 064	0.001	N/A	<1
50-32-8	Benzo(a)pyrene	32	32	32	57	35	35	36	TM4/PM8	mg/kg	<0.04	1.000	N/A	N/A	0.133	0.816	1.366	16 122	0.005	N/A	<1
193-39-5	Indeno(123cd)pyrene	45	46	46	82	500	510	510	TM4/PM8	ma/ka	<0.04	0.896	N/A	N/A	0.070	0.501	0.781	10.079	0.058	N/A	<1
53-70-3	Dibenzo(ah)anthracene	0.31	0.32	0.32	0.58	3.5	3.6	3.6	TM4/PM8	mg/kg	< 0.04	0.678	N/A	N/A	0.086	0.348	0.455	10.344	0.021	N/A	<1
191-24-2	Benzo(ghi)perylene	360	360	360	640	3,900	4,000	4,000	TM4/PM8	mg/kg	<0.04	1.117	N/A	N/A	0.137	0.678	0.857	10.027	0.062	N/A	<1
191-07-1	Coronene								TM4/PM8	mg/kg	<0.04	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
PAH_6_TOTAL	PAH 6 Total								TM4/PM8	mg/kg	<0.22	6.267	N/A	N/A	0.592	4.291	8.2	98.6	0.33	N/A	<1.6
PAH_17_TOTAL	PAH 17 Total								TM4/PM8	mg/kg	<0.64	11.733	N/A	N/A	1.531	8.512	18.912	225.433	0.675	N/A	<1
	PAHs																				
INTERPRETATION	EPH CWG Interpretation								TM5/PM16	None		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MINOIL_10-40	Mineral Oil (C10-C40)								TM5/PM16	mg/kg	<30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
	TPH CWG																				
	Aliphatics	10										51/A	b.1/ 6	21/2	b1/6	0.04	51/4		51/4	0.01	51/4
GTC05C06AL	>C5-C6	42	78	160	600,000	3,200	5,900	12,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	N/A	<0.01	N/A
GTC06C08AL	>06-08	100	230	530	620,000	7,800	17,000	40,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	N/A	N/A	<0.01	N/A
GTC10C12AL	>C10-C12	130	330	770	13,000	9,700	23 000	47 000	TM5/PM16	mg/kg	<0.1	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	N/A	<0.01	N/A
GTC12C16AL	>C12-C16	1,100	2.400	4.400	13.000	59.000	82.000	90.000	TM5/PM16	ma/ka	<4	N/A	N/A	N/A	N/A	<0.1	N/A	N/A	N/A	<0.1	N/A
GTC16C21AL	>C16-C21	.,	_,	.,			,		TM5/PM16	mg/kg	<7	N/A	N/A	N/A	N/A	<0.1	N/A	N/A	N/A	<0.1	N/A
GTC21C35AL	>C21-C35								TM5/PM16	mg/kg	<7	N/A	N/A	N/A	N/A	<0.1	N/A	N/A	N/A	<0.1	N/A
GTC05C40AL	Total aliphatics C5-40								TM5/TM36/PM1	ma/ka	<26	N/A	N/A	N/A	N/A	<0.1	N/A	N/A	N/A	<0.1	N/A
	Aromatica								2/PM16	.99									*		4
GTEC05EC07AR	>C5-FC7	370	093	1 400	56.000	26.000	46 000	86.000	TM36/PM12	ma/ka	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	N/A	N/A	<0.01	N/A
GTEC07EC08AR	>EC7-EC8	860	1,800	3,900	56,000	56.000	110.000	180.000	TM36/PM12	ma/ka	<0.1	N/A	N/A	N/A	N/A	<0.01	N/A	N/A	N/A	<0.01	N/A
GTEC08EC10AR	>EC8-EC10	47	110	270	5,000	3,500	8,100	17,000	TM36/PM12	mg/kg	<0.1	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	N/A	< 0.01	N/A
GTEC10EC12AR	>EC10-EC12	250	590	1,200	5,000	16,000	28,000	34,000	TM5/PM16	mg/kg	<0.2	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	N/A	<0.01	N/A
GTEC12EC16AR	>EC12-EC16	1,800	2,300	2,500	5,000	36,000	37,000	38,000	TM5/PM16	mg/kg	<4	N/A	N/A	N/A	N/A	2.60	N/A	N/A	N/A	<0.1	N/A
GTEC16EC21AR	>EC16-EC21	1,900	1,900	1,900	3,800	28,000	28,000	28,000	TM5/PM16	mg/kg	<7	N/A	N/A	N/A	N/A	4.00	N/A	N/A	N/A	<0.1	N/A
GTEC21EC35AR	>EC21-EC35	1,900	1,900	1,900	3,800	28,000	28,000	28,000	TM5/PM16	mg/kg	<7	N/A	N/A	N/A	N/A	1.00	N/A	N/A	N/A	<0.1	N/A
GTEC05EC40AR	Total aromatics C5-40								TM5/TM36/PM1	mg/kg	<26	N/A	N/A	N/A	N/A	7.60	N/A	N/A	N/A	<0.1	N/A
GTEC06EC10AR	>EC6-EC10								TM36/PM12	ma/ka	<0.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
										5.5											
1634-04-4	MTBE .							24,000	TM31/PM12	mg/kg	<0.05	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	N/A	<0.01	N/A
71-43-2	Benzene	380	700	1,400	73,000	27,000	47,000	90,000	TM31/PM12	mg/kg	<0.05	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	N/A	<0.01	<0.01
108-88-3	Toluene	880,000	1,900,000	3,900,000	56,000,000	56,000,000	110,000,000	180,000,000	TM31/PM12	mg/kg	<0.05	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	N/A	<0.01	<0.01
100-41-4	Ethylbenzene	83,000	190,000	480,000	25,000,000	5,700,000	13,000,000	27,000,000	TM31/PM12	mg/kg	<0.05	N/A	N/A	N/A	N/A	<0.01	N/A	N/A	N/A	<0.01	<0.01
XYLENE	Xylene	79,000	180,000	430,000	43,000,000	5,900,000	14,000,000	30,000,000	TM31/PM12	mg/kg	<0.05	N/A	N/A	N/A	N/A	<0.01	N/A	N/A	N/A	<0.01	<0.01

Connolly Station Car Park, Dublin 1

		GAC S4UL	GAC S4UL	GAC S4UL						Samp	le ID		BH	14		BH5	В	H6		BH7	
		Residential	Residential	Residential	Open Space	GAC S4UL	GAC S4UL	GAC S4UL		Dep	oth	1.00	5.0-5.3	6.0-6.3	7.20	2.00	1.00	2.00	0.5	3	6.50
		uptake End Use	without plant uptake End Use	uptake End Use	Residential 6%	Commercial End Use 1%	Use 2.5%	Use 6%		Sample	е Туре	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
CAS Number	Test	1%	2.5%	6%	301				Method	Units	LOD										
7012-37-5	PCB 28								TM17/PM8	ug/kg	<5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
35693-99-3	PCB 52								TM17/PM8	ug/kg	<5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
37680-73-2	PCB 101								TM17/PM8	ug/kg	<5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
31508-00-6	PCB 118								TM17/PM8	ug/kg	<5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
35065-28-2	PCB 138								TM17/PM8	ug/kg	<5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
35065-27-1	PCB 153								TM17/PM8	ug/kg	<5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
35065-29-3	PCB 180								TM17/PM8	ug/kg	<5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
PCB_7_CON_TOTAL	Total 7 PCBs [*]	1,000	1,000	1,000		1,000	1,000	1,000	TM17/PM8	ug/kg	<35	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<1
18540-29-9	Hexavalent Chromium	6	6	6	7.7	33	33	33	TM38/PM20	mg/kg	<0.01	<0.1	N/A	N/A	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	<0.1
108-95-2	Phenol	750	1,300	2,300		760	1,500	3,200	TM26/PM21	mg/kg	<0.01	N/A	N/A	N/A	N/A	< 0.01	N/A	N/A	<0.01	N/A	<0.01
MOIST_CONT_DRY	Natural Moisture Content								PM4/PM0	%	<0.1	9.50	N/A	N/A	40.90	23.20	15.00	27.20	3.90	17.80	7.80
57-12-5	Total Cyanide								TM89/PM45	mg/kg	<0.5	<2.5	N/A	N/A	<2.5	N/A	<2.5	<2.5	<1	N/A	<1
TOC	Total Organic Carbon								TM21/PM24	%	<0.02	7.60	N/A	N/A	N/A	3.10	N/A	N/A	N/A	N/A	0.50
SULPHIDE	Sulphide								TM106/PM45	mg/kg	<10	7.00	N/A	N/A	35.00	<5	17.00	<5	24.00	N/A	16.00
PH	ph								TM73/PM11	pH units		8.49	N/A	N/A	7.84	8.13	8.45	8.38	9.21	N/A	8.67
	Asbestos Screening								TM65/PM42	None		No Fibres Detected	N/A	N/A	No Fibres Detected	N/A	No Fibres Detected				

Notes:

GACs Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3583. All rights reserved. Averge site specific Soil Organic Matter (SOM) is

8.24%.

*Indicates GAC values from SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination - Policy Companion Document published in 2014 NAD = No Asbestos Detected. NA = Not Available.

EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment published in 2010.

+ GAC S4ULs EC >35- 44 were used in the absense of suitable for use levels for EC>35-40

^ Indicates Intervention Values taken from **DUTCH INTERVENTION 2009**

Table 2: Soil Samples SVOCs and VOC Results - Site Investigation 2008Connolly Station Car Park, Dublin 1

Sample ID

Depth

WS6

4

WS11

3

WS6

4

					Multidiscipli	inary Consulting E	Engineers		Sample Type		Soil	Soil	Soil	
									Sampled Date)	Unknown	Unknown	Unknown	U
CAS Number	Test	GAC S4UL Residential without plant uptake End Use 1%	GAC S4UL Residential without plant uptake End Use 2.5%	GAC S4UL Residential without plant uptake End Use 6%	GAC S4UL commercial End Use 1%	GAC S4UL Commercial End Use 2.5%	GAC S4UL Commercial End Use 6%	Method	Units	LOD				
	Total Organic Carbon							TM21/PM24	%	<0.02	1.6	-	1.6	
	Soil Organic Matter								%	<0.02	0.928	-	0.928	
	SVOC MS													
	Phenols													
95-57-8	2-Chlorophenol							TM16/PM8	ug/kg	<10	<100	<100	-	
95-48-7	2-Methylphenol							TM16/PM8	ug/kg	<10	<100	<100	-	
88-75-5	2-Nitrophenol							TM16/PM8	ug/kg	<10	<100	<100	_	1
120-83-2	2,4-Dichlorophenol							TM16/PM8	ug/kg	<10	<100	<100	_	
105-67-9	2,4-Dimethylphenol							TM16/PM8	ug/kg	<10	<100	<100	_	1
95-95-4	2,4,5-Trichlorophenol							TM16/PM8	ug/kg	<10	<100	<100	_	
88-06-2	2,4,6-Trichlorophenol							TM16/PM8	ug/kg	<10	<100	<100	-	
59-50-7	4-Chloro-3-methylphenol							TM16/PM8	ug/kg	<10	<100	<100	-	
106-44-5	4-Methylphenol							TM16/PM8	ug/kg	<10	<100	<100	-	-
100-02-7	4-Nitrophenol							TM16/PM8	ug/kg	<10	<100	<100	_	
	Sum of Mono to Tetra Chlorophenols	94,000	150,000	210,000	3,500,000	4,000,000	4,300,000							
87-86-5	Pentachlorophenol	27,000	29,000	31,000	400,000	400,000	400,000	TM16/PM8	ug/kg	<10	<100	<100	-	<u> </u>
108-95-2	Phenol	750.000	1.300.000	2.300.000	760.000	1.500.000	3.200.000	TM16/PM8	ua/ka	<10	<100	<100	_	
	Phthalates		,,	,,		,,	-,,							
117-81-7	Bis(2-ethylhexyl) phthalate							TM16/PM8	ua/ka	<100	<100	1663	_	
85-68-7	Butvlbenzvl phthalate							TM16/PM8	ua/ka	<100	<100	<100	_	
84-74-2	Di-n-butyl phthalate	450.000	450.000	450.000	15.000.000	15.000.000	15.000.000	TM16/PM8	ua/ka	<100	<100	<100	_	
117-84-0	Di-n-Octyl phthalate	3.400.000	3.400.000	3.400.000	89.000.000	89.000.000	89.000.000	TM16/PM8	ug/kg	<100	<100	<100	_	┢
84-66-2	Diethyl phthalate	1.800.000	3.500.000	6.300.000	150.000.000	220.000.000	290.000.000	TM16/PM8	ua/ka	<100	<100	<100	_	
131-11-3	Dimethyl phthalate	.,,	-,,	-,	,,			TM16/PM8	ug/kg	<100	<100	<100	_	
	Other SVOCs								-33					
95-50-1	1.2-Dichlorobenzene	24.000	57.000	130.000	2.000.000	4.800.000	11.000.000	TM16/PM8	ua/ka	<10	<100	<100	_	┢
120-82-1	1.2.4-Trichlorobenzene	2.600	6.400	15.000	220.000	530.000	1.300.000	TM16/PM8	ug/kg	<10	<100	<100	_	┢
541-73-1	1 3-Dichlorobenzene	440	1 100	2 500	30,000	73 000	170,000	TM16/PM8	ug/kg	<10	<100	<100	_	
106-46-7	1 4-Dichlorobenzene	61 000	150 000	350,000	4 400 000	10,000,000	25 000 000	TM16/PM8	ug/kg	<10	<100	<100	_	
88-74-4	2-Nitroaniline	01,000			.,,	,		TM16/PM8	ug/kg	<10	<100	<100	_	┢
121-14-2	2 4-Dinitrotoluene	170 000	170 000	170 000	3 700 000	3 700 000	3 800 000	TM16/PM8	ug/kg	<10	<100	<100		
606-20-2	2 6-Dinitrotoluene	78,000	84 000	87,000	1 900 000	1 900 000	1 900 000	TM16/PM8	ug/kg	<10	<100	<100	_	
99-09-2	3-Nitroaniline	,	01,000	0.,000	.,,	.,	.,,	TM16/PM8	ug/kg	<10	<100	<100	_	
101-55-3	4-Bromophenylphenylether							TM16/PM8	ug/kg	<10	<100	<100		
106-47-8	4-Chloroaniline							TM16/PM8	ug/kg	<10	<100	<100		
7005-72-3	4-Chlorophenvlphenvlether							TM16/PM8	ug/ka	<10	<100	<100	_	<u> </u>
100-01-6	4-Nitroaniline							TM16/PM8	ua/ka	<10	<100	<100	_	┢──
103-33-3	Azobenzene							TM16/PM8	ug/ka	<10	<100	<100	_	<u> </u>
111-91-1	Bis(2-chloroethoxy)methane							TM16/PM8	Jin/kn	<10	<100	<100		├──
111-44-4	Bis(2-chloroethyl)ether							TM16/PM8	ua/ka	<10	<100	<100	_	├──
86-74-8	Carbazole							TM16/PM8	ua/ka	<10	<100	<100	_	<u> </u>
132-64-9	Dibenzofuran							TM16/PM8	ug/ka	<10	<100	<100	_	<u> </u>
118-74-1	Hexachlorobenzene							TM16/PM8	ua/ka	<10	<100	<100	_	<u> </u>
									~3/~9	i v		100		

WS11	BH5
3	2
Soil	Soil
Unknown	Unknown
-	3.1
-	1.798
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
_	_
_	_
-	-
-	-
-	_
_	_
_	_
_	_
_	_
_	_
_	_
-	
-	-
-	-
-	-
-	-
-	-
-	-
-	-

Table 2: Soil Samples SVOCs and VOC Results - Site Investigation 2008						CC			Sample ID		WS6	WS11	WS6	WS11	BH5
Connolly Station	n Car Park, Dublin 1					50			Depth		4	3	4	3	2
					O'CONNOR SU Multidiscipli	TTON CRONIN	Engineers		Sample Type	ł	Soil	Soil	Soil	Soil	Soil
									Sampled Date)	Unknown	Unknown	Unknown	Unknown	Unknown
87-68-3	Hexachlorobutadiene							TM16/PM8	ug/kg	<10	<100	<100	-	-	_
77-47-4	Hexachlorocyclopentadiene							TM16/PM8	ug/kg	<10	<100	<100	-	-	_
67-72-1	Hexachloroethane	220	540	1,300	22,000	53,000	120,000	TM16/PM8	ug/kg	<10	<100	<100	-	-	_
78-59-1	Isophorone							TM16/PM8	ug/kg	<10	<100	<100	-	-	_
621-64-7	N-nitrosodi-n-propylamine							TM16/PM8	ug/kg	<10	<100	<100	-	-	_
98-95-3	Nitrobenzene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
321-60-8	Surrogate Recovery 2-Fluorobiphenyl							TM16/PM8	%	<0					
1718-51-0	Surrogate Recovery p-Terphenyl-d14							TM16/PM8	%	<0					
	Naphthalene							TM16/PM8	ug/kg	<10	<100	<100	-	-	_
	Acenaphthylene							TM16/PM8	ug/kg	<10	<100	<100	-	-	_
	Acenaphthene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	Fluorene							TM16/PM8	ug/kg	<10	<100	<100	-	_	_
	Phenanthrene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	Anthracene							TM16/PM8	ug/kg	<10	<100	<100	-	-	_
	Fluoranthrene							TM16/PM8	ug/kg	<10	163	185	-	-	-
	Pyrene							TM16/PM8	ug/kg	<10	130	153	-	-	-
	Benzo(a)anthracene							TM16/PM8	ug/kg	<10	<100	<100	-	_	_
	Chrysene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	Benzo(b)fluoranthene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	Benzo(k)fluoranthrene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	Benzo(a)pyrene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	Indeno(1,2,3-cd)pyrene							TM16/PM8	ug/kg	<10	<100	<100	_	_	_
	Dibenzo(a,h)anthracene							TM16/PM8	ug/kg	<10	<100	<100	-	_	_
	Benzo(ghi)perylene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	2-Chloronaphthalene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	2-Methylnaphthalene							TM16/PM8	ug/kg	<10	<100	<100	-	-	-
	VOC MS														
75-71-8	Dichlorodifluoromethane							TM15/PM10	ug/kg	<2	-	-	<2	<2	<2
1634-04-4	Methyl Tertiary Butyl Ether	73,000	120,000	220,000	7,900,00	13,000,000	24,000,000	TM15/PM10	ug/kg	<2	_	_	<3	<3	<3
74-87-3	Chloromethane	8.5	9.9	13	1,000	1,200	1,600	TM15/PM10	ug/kg	<3	_	_	<3	<3	<3
75-01-4	Vinyl Chloride	0.77	1	1.5	59	77	120	TM15_A/PM10	ug/kg	<2	_	_	<3	<3	<3
74-83-9	Bromomethane						120,000	TM15/PM10	ug/kg	<1	-	_	<5	<5	<5
75-00-3	Chloroethane	8,400	11,000	18,000	960,000	1,300,000	2,100,000	TM15/PM10	ug/kg	<2	-	-	<2.5	<2.5	<2.5
75-69-4	Trichlorofluoromethane							TM15/PM10	ug/kg	<2	-	-	<1.5	<1.5	<1.5
75-35-4	1,1-Dichloroethene (1,1 DCE)	230	410	820	26,000	46,000	92,000	TM15/PM10	ug/kg	<6	-	-	<2	<2	<2
75-09-2	Dichloromethane (DCM)	2,100	2,800	4,500	270,000	360,000	560,000	TM15/PM10	ug/kg	<30		-	<4	<4	<4
156-60-5	trans-1-2-Dichloroethene							TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
75-34-3	1,1-Dichloroethane	2,500	4,100	7,700	280,000	450,000	850,000	TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
156-59-2	cis-1-2-Dichloroethene	120	200	390	14,000	24,000	47,000	TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
594-20-7	2,2-Dichloropropane							TM15/PM10	ug/kg	<4	-	-	<3	<3	<3
74-97-5	Bromochloromethane							TM15/PM10	ug/kg	<3	-	-	<6	<6	<6
67-66-3	Chloroform	1,200	2,100	4,200	99,000	170,000	350,000	TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
71-55-6	1,1,1-Trichloroethane	9,000	18,000	40,000	660,000	1,300,000	3,000,000	TM15/PM10	ug/kg	<3	_	-	<1.5	<1.5	<1.5
563-58-6	1,1-Dichloropropene							TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
56-23-5	Carbon tetrachloride							TM15/PM10	ug/kg	<4		-	<1	<1	<1
107-06-2	1,2-Dichloroethane	9.2	13	23	670	970	1,700	TM15/PM10	ug/kg	<4	-	-	<5	<5	<5
71-43-2	Benzene	380	700	1,400	27,000	47,000	90,000	TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
L	•														

Conversion Conversion <thconversion< th=""> Conversion Convers</thconversion<>	Table 2: Soil Sar	mples SVOCs and VOC Results - S	Site Investigation	2008			CC			Sample ID		WS6	WS11	WS6	WS11	BH5
Production Sample Type	Connolly Station	ı Car Park, Dublin 1				SC			Depth		4	3	4	3	2	
Theory					O'CONNOR SU Multidiscipli	TTON CRONIN	Engineers		Sample Type		Soil	Soil	Soil	Soil	Soil	
Pro10. Triducement(C) PT B0 1200 2.000 MNRPHI0 upbg 6-3 C		79-01-6 Trichloroethene (TCE) 17 3								Sampled Date)	Unknown	Unknown	Unknown	Unknown	Unknown
7443. 1.3.000 1.3.00 9.000 1.000 1.000 0.0000 0.000 0.000 0.000	79-01-6	Trichloroethene (TCE)	17	36	80	1,200	2,600	5,700	TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
77-530Decommunance Brandard sectorDecommunance Brandard sector00<	78-87-5	1,2-Dichloropropane	24	42	85	3,300	5,900	12,000	TM15/PM10	ug/kg	<6	-	-	<3	<3	<3
75.24 BurnelMonnerHume Burnel MonnerHume Burnel MonnerHume Constrained	74-95-3	Dibromomethane							TM15/PM10	ug/kg	<3	-	-	<8	<8	<8
1000 1000 <th< td=""><td>75-27-4</td><td>Bromodichloromethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td>TM15/PM10</td><td>ug/kg</td><td><3</td><td>-</td><td>-</td><td><3</td><td><3</td><td><3</td></th<>	75-27-4	Bromodichloromethane							TM15/PM10	ug/kg	<3	-	-	<3	<3	<3
108.43 Token 80.000 300.000 300.000 90.000 70.0000 70.	10061-01-5	cis-1-3-Dichloropropene							TM15/PM10	ug/kg	<4	-	-	<3.5	<3.5	<3.5
1001:02.0 hans 1 Solvagnegeme Hans 1 Solvagnegeme <t< td=""><td>108-88-3</td><td>Toluene</td><td>880,000</td><td>1,900,000</td><td>3,900,000</td><td>56,000,000</td><td>110,000,000</td><td>180,000,000</td><td>TM15/PM10</td><td>ug/kg</td><td><3</td><td>-</td><td>-</td><td><1</td><td><1</td><td><1</td></t<>	108-88-3	Toluene	880,000	1,900,000	3,900,000	56,000,000	110,000,000	180,000,000	TM15/PM10	ug/kg	<3	-	-	<1	<1	<1
7700.05 11.27.eladucathane 12.27.eladucathane 12.27.eladucathane	10061-02-6	trans-1-3-Dichloropropene							TM15/PM10	ug/kg	<3	-	-	<4	<4	<4
127.144 Tenchwarene (PC) 180 400 9100 14.200 7015PM10 updag 4.3 1.1 1.1 1.1 112.206 1.3.Do?licagordenia IC IC IC ID15PM10 updag 4.3 IC IC IC IC ID15PM10 updag 4.3 IC IC </td <td>79-00-5</td> <td>1,1,2-Trichloroethane</td> <td>880</td> <td>1,800</td> <td>3,900</td> <td>94,000</td> <td>190,000</td> <td>400,000</td> <td>TM15/PM10</td> <td>ug/kg</td> <td><3</td> <td>-</td> <td>-</td> <td><4.5</td> <td><4.5</td> <td><4.5</td>	79-00-5	1,1,2-Trichloroethane	880	1,800	3,900	94,000	190,000	400,000	TM15/PM10	ug/kg	<3	-	-	<4.5	<4.5	<4.5
142849 1.3.babroprograme International and the second	127-18-4	Tetrachloroethene (PCE)	180	400	920	19,000	42,000	95,000	TM15/PM10	ug/kg	<3	-	-	<1	<1	<1
1244-10 Oblemondsomshame Image of the second secon	142-28-9	1,3-Dichloropropane							TM15/PM10	ug/kg	<3	-	-	<5	<5	<5
108-94-1 1.2-Ditromestrane 1.0-Ditromestrane 1.	124-48-1	Dibromochloromethane							TM15/PM10	ug/kg	<3	-	-	<4	<4	<4
108-07 Chinobenzene 460 1.000 2.400 56.000 10.1001 280.000 11.19/11 0.41 -1	106-93-4	1,2-Dibromoethane							TM15/PM10	ug/kg	<3	-	-	<5	<5	<5
B32-04 11.12-fractalcoordinane 1.500 3.500 8.200 110.000 250.000 781.6PM10 updg 4.3 </td <td>108-90-7</td> <td>Chlorobenzene</td> <td>460</td> <td>1,000</td> <td>2,400</td> <td>56,000</td> <td>130,000</td> <td>290,000</td> <td>TM15/PM10</td> <td>ug/kg</td> <td><3</td> <td>-</td> <td>-</td> <td><1</td> <td><1</td> <td><1</td>	108-90-7	Chlorobenzene	460	1,000	2,400	56,000	130,000	290,000	TM15/PM10	ug/kg	<3	-	-	<1	<1	<1
100-144 Emplemente 83.000 190.000 65.700.000 13200.000 3300.000 ThiSPMI0 upkg -3 5 1 -1 -1 1	630-20-6	1,1,1,2-Tetrachloroethane	1,500	3,500	8,200	110,000	250,000	560,000	TM15/PM10	ug/kg	<3	-	-	<2	<2	<2
$P_{M,VVICNEpm-Xylene161.000370.000880.00012.0000880.00011.00000TM15PM10upkg<5<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$	100-41-4	Ethylbenzene	83,000	190,000	480,000	5,700,000	13,000,000	33,000,000	TM15/PM10	ug/kg	<3	-	-	<1	<1	<1
957-6 0-Xyene 88.00 210.00 480.000 66.00.000 150.00.000 TMIS_APPII up/g <3 < < <1 <1 100.425 Styrene 35.000 77.000 170.000 3.300.000 TMIS_APPII up/g <3	P_M_XYLENE	p/m-Xylene	161,000	370,000	880,000	12,100,000	28,000,000	61,000,000	TM15/PM10	ug/kg	<5	-	-	<2	18	<2
100.42-5 Styrene 35.000 78.000 170.000 3.30.000 6.500.000 111.00.000 TM15_APM10 ug/kg 4.3 1 4.1 4.1 4.1 75.25-2 Bromoform 5.200 11.000 220.000 760.000 1.000.000 TM15PM10 ug/kg 4.3 1 4.1 4.1 4.1 4.1 98-82.8 Isoprophytherzne 12.000 28.000 67.000 1.400.000 3.300.000 TM15PM10 ug/kg 4.3 1 4.1 4.1 79-34-5 1.1.2.2 Tetrachtoroethane 3.900 8.000 17.000 270.000 550.000 TM15PM10 ug/kg 4.3 1 4.1	95-47-6	o-Xylene	88,000	210,000	480,000	6,600,000	15,000,000	33,000,000	TM15/PM10	ug/kg	<3	-	-	<1	<1	<1
T75252 Bronoferm 5,200 11,000 23,000 760,000 1,500,000 3,100,000 TM/5/PM10 ugkg <3 < <7 <7 <7 98,82.8 Isopropylenzene 12,000 28,000 67,000 1,400,000 3,300,000 TM/5/PM10 ugkg <3	100-42-5	Styrene	35,000	78,000	170,000	3,300,000	6,500,000	11,000,000	TM15_A/PM10	ug/kg	<3	-	-	<1	<1	<1
98-82-8 Isoprophenzene 12,000 28,000 67,000 1,400,000 3,300,000 7,700,000 TM15/PM10 ug/kg <3 < <	75-25-2	Bromoform	5,200	11,000	23,000	760,000	1,500,000	3,100,000	TM15/PM10	ug/kg	<3	-	-	<7	<7	<7
79:34-5 1,1,2,2-Tetachloroethane 3,900 8,000 17,000 270,000 550,000 TM15FM10 ugkg <3 < <td>98-82-8</td> <td>Isopropylbenzene</td> <td>12,000</td> <td>28,000</td> <td>67,000</td> <td>1,400,000</td> <td>3,300,000</td> <td>7,700,000</td> <td>TM15/PM10</td> <td>ug/kg</td> <td><3</td> <td>-</td> <td>-</td> <td><1</td> <td>5</td> <td><1</td>	98-82-8	Isopropylbenzene	12,000	28,000	67,000	1,400,000	3,300,000	7,700,000	TM15/PM10	ug/kg	<3	-	-	<1	5	<1
108-86-1 Bromobenzene 910 2,100 4,900 97,000 220,000 520,000 TM15/PM10 ug/kg <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	79-34-5	1,1,2,2-Tetrachloroethane	3,900	8,000	17,000	270,000	550,000	1,100,000	TM15/PM10	ug/kg	<3	-	-	<8	<8	<8
96-18-4 1.2.3-Trichloropropane M	108-86-1	Bromobenzene	910	2,100	4,900	97,000	220,000	520,000	TM15/PM10	ug/kg	<2	-	-	<2	<2	<2
103-86-1 Propylbenzene 40,000 97,000 230,000 4,100,000 97,00,000 TM15/PM10 ugkg 44 1 10 1 95-84-8 2-Chlorotoluene C C C TM15/PM10 ugkg 43 41 41 41 108-67-8 1,3,5-Trimethylbenzene C C TM15/PM10 ugkg 43 41 41 41 108-63-4 4-Chorotoluene C C TM15/PM10 ugkg 43 41 41 98-06-6 tert-Butylbenzene 410 990 2,300 42,000 99,000 220,000 TM15/PM10 ugkg 45	96-18-4	1,2,3-Trichloropropane							TM15/PM10	ug/kg	<4	-	-	<8	<8	<8
95.49.8 2-Chlorotoluene Image: Chlorotoluene	103-65-1	Propylbenzene	40,000	97,000	230,000	4,100,000	9,700,000	21,000,000	TM15/PM10	ug/kg	<4	-	-	<1	10	<1
108-67-8 1,3,5-Trimethylbenzene Image: Mark and Mark a	95-49-8	2-Chlorotoluene							TM15/PM10	ug/kg	<3	-	-	<1	<1	<1
106434 4-Chlorotoluene Image: Constraint of the state of the stat	108-67-8	1,3,5-Trimethylbenzene							TM15/PM10	ug/kg	<3	-	-	<1	11	<1
98-06-6 tert-Butylbenzene 410 990 2,300 42,000 99,000 220,000 TM15/PM10 ug/kg <6	106-43-4	4-Chlorotoluene							TM15/PM10	ug/kg	<3	-	-	<1	<1	<1
95-63-6 1,2,4-Trimethylbenzene 410 990 2,300 42,000 99,000 220,000 TM15/PM10 ug/kg <6 1 <1 71 <1 135-98-8 sec-Butylbenzene	98-06-6	tert-Butylbenzene							TM15/PM10	ug/kg	<5	-	-	<1	<1	<1
135-98-8 sec-Butylbenzene Image: Constraint of the second	95-63-6	1,2,4-Trimethylbenzene	410	990	2,300	42,000	99,000	220,000	TM15/PM10	ug/kg	<6	-	-	<1	71	<1
99-87-6 4-lsopropyltoluene 440 1,00 2,500 30,000 73,000 TM15/PM10 ug/kg <4 <1 <1 <1 541-73-1 1,3-Dichlorobenzene 440 1,100 2,500 30,000 73,000 TM15/PM10 ug/kg <4	135-98-8	sec-Butylbenzene							TM15/PM10	ug/kg	<4	-	-	<1	3	<1
541-73-1 1,3-Dichlorobenzene 440 1,100 2,500 30,000 73,000 170,000 TM15/PM10 ug/kg <4 <1 <1 <1 106-46-7 1,4-Dichlorobenzene 61,000 150,000 350,000 4,400,000 10,000,000 25,000,000 TM15/PM10 ug/kg <4	99-87-6	4-Isopropyltoluene							TM15/PM10	ug/kg	<4	-	-	<1	<1	<1
106-46-7 1,4-Dichlorobenzene 61,000 150,000 350,000 4,400,000 10,000,000 25,000,000 TM15/PM10 ug/kg <4	541-73-1	1,3-Dichlorobenzene	440	1,100	2,500	30,000	73,000	170,000	TM15/PM10	ug/kg	<4	-	-	<1	<1	<1
104-51-8 n-Butylbenzene Image: Constraint of the constraint of	106-46-7	1,4-Dichlorobenzene	61,000	150,000	350,000	4,400,000	10,000,000	25,000,000	TM15/PM10	ug/kg	<4	-	-	<3	<3	<3
95-50-1 1,2-Dichlorobenzene 24,000 57,000 130,000 2,000,000 4,800,000 11,000,000 TM15/PM10 ug/kg <4 <2 <2 <2 96-12-8 1,2-Dibromo-3-chloropropane <	104-51-8	n-Butylbenzene							TM15/PM10	ug/kg	<4	-	-	<2	<2	<2
96-12-8 1,2-Dibromo-3-chloropropane Image: Constraint of the state of the stat	95-50-1	1,2-Dichlorobenzene	24,000	57,000	130,000	2,000,000	4,800,000	11,000,000	TM15/PM10	ug/kg	<4	-	-	<2	<2	<2
120-82-1 1,2,4-Trichlorobenzene 2,600 6,400 15,000 220,000 530,000 1,300,000 TM15/PM10 ug/kg <7 <3 <3 <3 87-68-3 Hexachlorobutadiene 320 780 1,800 31,000 66,000 120,000 TM15/PM10 ug/kg <4	96-12-8	1,2-Dibromo-3-chloropropane							TM15/PM10	ug/kg	<4	-	-	<13	<13	<13
87-68-3 Hexachlorobutadiene 320 780 1,800 31,000 66,000 120,000 TM15/PM10 ug/kg <4 <2 <2 91-20-3 Naphthalene 2,300 5,600 13,000 190,000 460,000 1,100,000 TM15/PM10 ug/kg <27	120-82-1	1,2,4-Trichlorobenzene	2,600	6,400	15,000	220,000	530,000	1,300,000	TM15/PM10	ug/kg	<7	-	-	<3	<3	<3
91-20-3 Naphthalene 2,300 5,600 13,000 190,000 460,000 1,100,000 TM15/PM10 ug/kg <27 - - <4 <4 <4 87-61-6 1,2,3-Trichlorobenzene 1,500 3,700 8,800 102,000 250,000 590,000 TM15/PM10 ug/kg <7	87-68-3	Hexachlorobutadiene	320	780	1,800	31,000	66,000	120,000	TM15/PM10	ug/kg	<4	-	-	<2	<2	<2
87-61-6 1,2,3-Trichlorobenzene 1,500 3,700 8,800 102,000 250,000 590,000 TM15/PM10 ug/kg <7 <2.5 <2.5 <2.5	91-20-3	Naphthalene	2,300	5,600	13,000	190,000	460,000	1,100,000	TM15/PM10	ug/kg	<27	-	-	<4	<4	<4
	87-61-6	1,2,3-Trichlorobenzene	1,500	3,700	8,800	102,000	250,000	590,000	TM15/PM10	ug/kg	<7	-	-	<2.5	<2.5	<2.5

Notes:

GACs Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3583. All rights reserved. # EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment published in 2010.

- = Not tested

Table 3: Groundwater Er	nvironmental Risk Site Investigat	tion 2008																														
Connolly Station Car Par	rk, Dublin 1		000		San	nple ID		BH1		B	BH2		BH3			E	BH4			BH5		Bł	16		BH7			WS7			WS11	
			CSC		D	epth	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
			NOR SUTTON CRONIN		Samp	ole Type	Ground Wate	r Ground Water	Ground Water	Ground Water	Ground Water	Ground Wate	r Ground Wate	er Ground Water	Ground Wate	er Ground Water	Ground Water	r Ground Wate	r Ground Wate	r Ground Water	r Ground Water	Ground Water	Ground Water	r Ground Water	Ground Water	Ground Wate	r Ground Water	r Ground Wate	er Ground Wate	r Ground Water	Ground Wate	or Ground Water
		Multi	idisciplinary Consult	ing Engineers	Comm	and Data	04/00/0000	40/00/0000	47/00/0000	40/00/0000	47/00/0000	20/00/2000	0.4/00/2000	40/00/0000	20/00/2000	0.4/00/0000	0.4/00/2000	40/00/0000	20/00/0000	40/00/0000	47/00/0000	40/00/0000	47/00/0000	00/00/0000	04/00/0000	40,000,0000	00/00/0000	0.4/00/0000	40/00/0000	00/00/0000	0.4/00/2000	40/00/0000
					Samp	oled Date	04/09/2008	10/09/2008	17/09/2008	10/09/2008	17/09/2008	29/08/2008	04/09/2008	10/09/2008	29/08/2008	04/09/2008	04/09/2008	10/09/2008	29/08/2008	10/09/2008	17/09/2008	10/09/2008	17/09/2008	29/08/2008	04/09/2008	10/09/2008	29/08/2008	04/09/2008	10/09/2008	29/08/2008	04/09/2008	10/09/2008
CAS Number	Test	Groundwater Regulations	EPA Interim Guideline Values	Method	Units	LOD																										
B1 10 00 0		2016	2003										<u> </u>		-						- ·											-
7440-36-0	Dissolved Antimony	B 50		TM30/PM14	ug/l	<2	1	<1	2	<1	3	3	1	<1	5	<1	N/A	<1	3	3	4	<1	<1	<1	<1	1	11	21	20	<1	3	2
7440-38-2	Dissolved Arsenic	7.50	10	TM30/PM14	ug/I	<2.5	1	<1	2	2	3	3	<1	<1	5	2	N/A	<1	10	9	10	2	3	5	8	8	3	8	1	2	6	4
7440-43-9	Dissolved Cadmium	37.50	5	TM30/PM14 TM30/PM14	ug/l	<0.5	<0.4	<0.4	<0.4	<0.4	<u.4 1</u.4 	0.4	0.5	<0.4	<u.4 2</u.4 	0.5	N/A 6	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	1.0	1.3	1.3	<u.4 7</u.4 	<0.4	<0.4	<u.4 Q</u.4 	<0.4	<0.4
7440-50-8	Dissolved Copper	07.00	30	TM30/PM14	ug/l	<7	2	3	1	3	2	3	7	4	5	15	N/A	5	4	5	5	<1	2	8	8	4	5	9	5	4	9	1
7439-92-1	Dissolved Lead	7.50	10	TM30/PM14	ug/l	<5	1	16	<1	<1	<1	<1	19	1	2	34	N/A	1	2	4	<1	<1	3	<1	4	1	2	35	2	6	62	2
7439-97-6	Dissolved Mercury	0.75	1	TM30/PM14	ug/l	<1	N/A	< 0.05	< 0.05	< 0.05	< 0.05	0.08	N/A	< 0.05	0.05	N/A	N/A	0.05	< 0.05	< 0.05	<0.05	0.07	<0.05	< 0.05	N/A	0.06	< 0.05	N/A	< 0.05	< 0.05	N/A	< 0.05
7440-02-0	Dissolved Nickel		20	TM30/PM14	ug/l	<2	6	6	4	7	4	5	7	2	4	68	N/A	2	17	17	19	7	10	14	13	13	10	10	8	8	15	12
7782-49-2	Dissolved Selenium			TM30/PM14	ug/l	<3	12	8	11	3	10	16	<1	3	8	2	N/A	<1	<1	<1	2	<1	<1	31	28	27	1	10	<1	<1	<1	2
7440-66-6	Dissolved Zinc	75.00	100	TM30/PM14	ug/l	<3	21	151	<1	32	<1	32	45	22	34	104	N/A	18	57	55	32	27	27	35	25	17	34	36	23	76	72	15
VOCTIC	VOC TICs			TM15/PM10	None																											
1634-04-4	Methyl Tertiary Butyl Ether	10.00	30	TM15/PM10	ug/l	<0.1	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	N/A	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	14	17
71-43-2	Benzene	0.75	1	TM15/PM10	ug/l	<0.5	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	N/A	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	31	<0.01
108-88-3	Toluene	525.00	10	TM15/PM10	ug/l	<5	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	19	<0.01	< 0.01
100-41-4	Ethylbenzene		10	TM15/PM10	ug/l	<1	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	N/A	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	211	13	15
XYLENE	Xytene		10	TM15/PM10	ug/I	<2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	N/A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	527	35	23
108-95-2	Phenol		0.5	TM16/PM30	10/1	<1	0.02	<0.01	0.18	<0.01	0.13	N/A	0.03	<0.01	N/A	0.03	N/A	<0.01	N/A	<0.01	0.09	<0.01	0.03	N/A	<0.01	<0.01	N/A	0.02	<0.01	N/A	0.03	<0.01
100 00-2	PAHs		0.0				v.v£	-9.91	0.10	-0.01	0.10		0.00	-5.01		0.00		-0.01		-0.01	0.00	-9.91	0.00	14/3	-0.01	-0.01		0.02	-0.01	10/3	0.00	-0.01
91-20-3	Naphthalene		1	TM16/PM30	ug/l	<1	< 0.01	< 0.01	< 0.01	0.117	0.013	0.531	< 0.01	0.07	0.028	< 0.01	N/A	< 0.01	0.02	< 0.01	< 0.01	0.013	0.382	0.031	< 0.01	< 0.01	0.037	< 0.01	< 0.01	0.617	< 0.01	< 0.01
208-96-8	Acenaphthylene			TM16/PM30	ug/l	<0.5	< 0.01	<0.01	< 0.01	4.631	5.201	33.067	< 0.01	3.775	0.023	< 0.01	N/A	<0.01	0.011	< 0.01	< 0.01	0.013	1.147	< 0.01	< 0.01	< 0.01	0.018	< 0.01	<0.01	2.35	< 0.01	0.018
83-32-9	Acenaphthene			TM16/PM30	ug/l	<1	< 0.01	<0.01	< 0.01	1.836	1.222	6.966	<0.01	1.099	0.022	< 0.01	N/A	< 0.01	0.029	< 0.01	< 0.01	0.038	1.693	0.011	< 0.01	< 0.01	0.032	< 0.01	<0.01	2.996	< 0.01	0.045
86-73-7	Fluorene			TM16/PM30	ug/l	<0.5	<0.01	<0.01	<0.01	2.027	0.031	1.611	<0.01	1.552	0.016	<0.01	N/A	<0.01	0.04	< 0.01	< 0.01	0.047	1.781	0.025	< 0.01	< 0.01	0.079	<0.01	<0.01	1.73	< 0.01	0.045
85-01-8	Phenanthrene			TM16/PM30	ug/l	<0.5	<0.01	<0.01	< 0.01	3.303	0.067	2.803	<0.01	2.106	0.034	< 0.01	N/A	< 0.01	0.159	< 0.01	< 0.01	0.088	3.062	0.04	< 0.01	< 0.01	0.187	<0.01	<0.01	3.956	< 0.01	0.061
120-12-7	Anthracene		10,000	TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	1.901	0.019	2.221	< 0.01	1.396	0.013	< 0.01	N/A	< 0.01	0.043	< 0.01	<0.01	0.029	0.596	< 0.01	< 0.01	< 0.01	0.086	< 0.01	< 0.01	0.48	< 0.01	0.025
206-44-0	Fluoranthene		1	TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	2.407	< 0.01	0.578	< 0.01	1.135	0.011	< 0.01	N/A	< 0.01	0.083	< 0.01	< 0.01	0.045	1.318	<0.01	< 0.01	< 0.01	0.141	< 0.01	< 0.01	1.792	< 0.01	0.037
129-00-0	Pyrene			TM16/PM30	ug/l	<0.5	<0.01	<0.01	< 0.01	1.975	<0.01	1.094	< 0.01	0.982	0.011	<0.01	N/A	< 0.01	0.075	<0.01	<0.01	0.041	1.075	< 0.01	< 0.01	< 0.01	0.117	<0.01	<0.01	1.554	< 0.01	0.03
56-55-3	Benzo(a)anthracene			TM16/PM30	ug/l	<0.5	<0.01	< 0.01	< 0.01	1.867	< 0.01	< 0.01	< 0.01	0.647	< 0.01	< 0.01	N/A	< 0.01	0.027	< 0.01	<0.01	0.013	0.43	<0.01	< 0.01	< 0.01	0.085	<0.01	< 0.01	0.635	<0.01	< 0.01
218-01-9	Chrysene			TM16/PM30	ug/l	<0.5	<0.01	< 0.01	< 0.01	1.908	< 0.01	< 0.01	<0.01	0.632	<0.01	<0.01	N/A	<0.01	0.026	<0.01	< 0.01	0.01	0.311	<0.01	< 0.01	< 0.01	0.083	< 0.01	< 0.01	0.545	< 0.01	<0.01
BEN-BK-FLUORAN	Benzo(bk)fluoranthene	0.0075	0.5	TM16/PM30	ug/I	<1	<0.01	<0.01	<0.01	2.07	<0.01	<0.01	<0.01	0.903	0.017	<0.01	N/A	<0.01	0.036	<0.01	<0.01	0.01	0.321	<0.01	<0.01	<0.01	0.06	<0.01	<0.01	0.551	<0.01	<0.01
50-32-8 102-30 F	Benzo(a)pyrene	0.0075	0.01	TM16/PM30	ug/i	<1	<0.01	<0.01	<0.01	0.204	<0.01	<0.01	<0.01	0.453	<0.01	<0.01	N/A N/A	<0.01	0.013	<0.01	<0.01	<0.01	0.060	<0.01	<0.01	< 0.01	0.041	< 0.01	<0.01	0.117	< 0.01	<0.01
53-70-3	Dibenzo(ab)anthracene		0.05	TM16/PM30	ug/l	<0.5	<0.01	<0.01	<0.01	0.204	<0.01	<0.01	<0.01	0.086	<0.01	<0.01	N/A	<0.01	0.012	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	0.020	<0.01	<0.01	0.077	<0.01	<0.01
191-24-2	Benzo(ahi)pervlene		0.05	TM16/PM30	ug/l	<0.5	<0.01	<0.01	<0.01	0.13	<0.01	<0.01	<0.01	0.217	<0.01	<0.01	N/A	<0.01	0.010	<0.01	<0.01	<0.01	0.082	<0.01	<0.01	<0.01	0.023	<0.01	<0.01	0.128	<0.01	<0.01
	Total 16 EPA PAHs		0.1		ug/l	<1	< 0.01	< 0.01	< 0.01	25.399	6.576	48.871	< 0.01	15.304	0.208	< 0.01	N/A	< 0.01	0.608	< 0.01	< 0.01	0.347	12.445	0.149	< 0.01	< 0.01	1.105	< 0.01	< 0.01	17.734	< 0.01	0.275
	TPH CWG																															1
	Aliphatics														1																	
GTC05C06AL	>C5-C6			TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	138	1004	34
GTC06C08AL	>C6-C8			TM36/PM12	ug/l	<10	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1453	1927	454
GTC08C10AL	>C8-C10			TM36/PM12	ug/l	<10	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	948.8	1649.6	315.6
GTC10C12AL	>C10-C12			TM5/PM16/PM30	ug/l	<5	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	N/A	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	1272.8	1403.2	344.4
GTC12C16AL	>C12-C16			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	226	< 0.01	< 0.01	< 0.01	111	<0.01	< 0.01	N/A	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1734	103.1	1152
GTC16C21AL	>C16-C21			TM5/PM16/PM30	ug/l	<10	<0.01	<0.01	<0.01	1088	< 0.01	< 0.01	< 0.01	761	<0.01	<0.01	N/A	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	444	66.7	443
GTC05C35AL	>U21-U30			TMS/TM9/PM12/PM18/PM0	ug/l	<10	<0.01	<0.01	<0.01	16626	<0.01	<0.01	<0.01	03/0	<0.01	<0.01	N/A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	5000.6	6153.6	2743
0100000,12	Aromatics				ug,		-0.01	-0.01	-0.01	10020	-0.01	-0.01	-0.01	0210	-0.01	-0.01	1673	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0000.0	0100.0	2140
GTEC05EC07AR	>C5-EC7			TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	31	< 0.01
GTEC07EC08AR	>EC7-EC8			TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	19	< 0.01	< 0.01
GTEC08EC10AR	>EC8-EC10			TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2161.2	2522.4	511.4
GTEC10EC12AR	>EC10-EC12			TM5/PM16/PM30	ug/l	<5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1909.2	2104.8	516.6
GTEC12EC16AR	>EC12-EC16			TM5/PM16/PM30	ug/l	<10	< 0.01	<0.01	< 0.01	18080	6553	48320	< 0.01	12045	130	< 0.01	N/A	< 0.01	445.2	< 0.01	261	301	< 0.01	99	< 0.01	< 0.01	660	< 0.01	183	14858	4337	10672
GTEC16EC21AR	>EC16-EC21			TM5/PM16/PM30	ug/l	<10	<0.01	<0.01	<0.01	6049	<0.01	<0.01	<0.01	2434	35	<0.01	N/A	<0.01	101	<0.01	<0.01	35	<0.01	13	<0.01	< 0.01	269	<0.01	61	1848	<0.01	1131
GTEC21EC35AR	>EC21-EC35			TM5/PM16/PM30	ug/l	<10	<0.01	<0.01	< 0.01	438	<0.01	< 0.01	<0.01	303	10	<0.01	N/A	<0.01	32	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	86	<0.01	24	105	<0.01	112
GTEC05EC35AR	Total aromatics C5-35			TM5/TM36/PM12/PM16/PM30	ug/l	<10	<0.01	<0.01	<0.01	24567	6553	48320	<0.01	14782	175	<0.01	N/A	<0.01	578.2	<0.01	261	336	<0.01	112	< 0.01	<0.01	1015	<0.01	268	20900.4	8995.2	12943
GTC05C35ALAR	Total TPH C2-C40	7.50	10	TM5/TM36/PM12/PM16/PM30	ug/l	<10	<0.01	<0.01	<0.01	41193	6553	48320	<0.01	24030	175	<0.01	N/A	<0.01	578.2	<0.01	261	336	<0.01	112	<0.01	<0.01	1015	<0.01	268	26891	15148.8	15686
7040 07 5	000.00			THEFT			B.174		h714		h											N/11	b710									
7012-37-5	PCB 28			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A	< 0.01	<0.01	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
37680.73.2	PUB 52			TM17/PM30	ug/I	<u.1< td=""><td>N/A</td><td>IN/A.</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A.</td><td><0.01</td><td><0.01</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>IN/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A N/A</td><td>N/A</td></u.1<>	N/A	IN/A.	N/A N/A	N/A N/A	N/A N/A	N/A.	<0.01	<0.01	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	IN/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A
31508-00-6	PCB 118			TM17/PM30	ug/i	<0.1	N/A	N/A	N/A	N/A	N/A	N/A	<0.01	<0.01	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
35065-28-2	PCB 138			TM17/PM30	ua/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A	< 0.01	<0.01	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
35065-27-1	PCB 153			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A	< 0.01	< 0.01	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
35065-29-3	PCB 180			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A	< 0.01	<0.01	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PCB_7_CON_TOTAL	Total 7 PCBs		0.01	TM17/PM30	ug/l	<0.7	N/A	N/A	N/A	N/A	N/A	N/A	<0.01	< 0.01	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
16984-48-8	Fluoride			TM173/PM0	mg/l	<0.3																										
14808-79-8	Sulphate as SO4	187.50	200	TM38/PM0	mg/l	<0.5	393	342	313	308	261	268	39	19	302	183	N/A	128	952	1021	976	91	89	841	1003	992	777	826	770	72	73	101
16887-00-6	Chloride	187.50	30	TM38/PM0	mg/l	<0.3	841	800	672	1,792	1,214	1,790	62	38	925	624	N/A	493	29	35	29	20	15	6475	7208	7750	15	2011	16	14	17	17
01/11/15				Th 100	<u> </u>								1			1																+
GYANIDE_FREE	Free Cyanide			1 M89/PM0	mg/l	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	N/A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
AMM_NITROGEN N	Ammoniacal Nitrogen as N	0.18		TM38/PM0	mg/l	<0.03	<0.2	<0.2	< 0.2	36	39.4	<0.2	< 0.2	<0.2	< 0.2	< 0.2	N/A	<0.2	8.9	9.6	8.9	17.4	0.8	2	5.3	1.5	6.8	4.9	2	3.4	4	20.6
ALK_TOT_CACO3	Total Alkalinity as CaCO3		200	TM75/PM0	mg/l	<1	472	520	508	799	701	573	162	90	610	391	N/A	281	1610	1564	1552	776	455	1986	1806	1906	1182	1337	982	450	548	748
JEL575	BOD (Settled)			TM58/PM0	mg/l	<1	<2	<2	<2	<2	<2	43	9	<2	4	2	N/A	<2	<2	93	<2	<2	<2	2	<2	<2	18	<2	<2	4	4	<2
COD	COD (Settled)			TM57/PM0	mg/l	<7	204	366	<15	178	42	73	144	593	<15	129	N/A	229	897	280	<15	402	327	72	350	660	2242	696	574	912	339	35
TOC	Total Organic Carbon			TM60/PM0	mg/l	<2	<2	<2	3	9	10	6	<2	12	6	<2	N/A	3	7	7	7	7	14	4	<2	3	7	<2	7	10	<2	7
L	pH		>6.5 & <9.5	1	pH units		7.59	7.71	7.68	7.29	7.86	7.76	7.89	7.92	10.05	7.57	N/A	7.8	7.07	7.02	7.58	7.14	7.42	7.37	7.95	7.54	7.33	7.58	7.57	7.14	7.61	7.51

Notes: N/A = Not Analysed/ No Analytical Results

Connolly Station Car Pa	ark, Dublin 1		000		Sam	ple ID		BH1		В	H2		
			OCS	•	De	epth	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	l
			O'CONNOR SUTTON CRO	NIN Sulting Engineers	Samp	le Type	Ground Water	Gro					
			Particusciplinary con	suring Engineers	Samp	ed Date	04/09/2008	10/09/2008	17/09/2008	10/09/2008	17/09/2008	29/08/2008	0
CAS Number	Test	SoBRA 2017 Residential Development GACs	SoBRA 2017 Commercial Development GACs	Method	Units	LOD							
												ļ]	L
7440-36-0	Dissolved Antimony			TM30/PM14	ug/l	<2	1	<1	2	<1	3	3	L
7440-38-2	Dissolved Arsenic			TM30/PM14	ug/l	<2.5	1	<1	2	2	3	3	
7440-43-9	Dissolved Cadmium			TM30/PM14	ug/l	<0.5	<0.4	<0.4	<0.4	<0.4	<0.4	0.4	L
7440-47-3	Total Dissolved Chromium			TM30/PM14	ug/l	<1.5	<1	1	<1	<1	1	4	
7440-50-8	Dissolved Copper			TM30/PM14	ug/l	<7	2	3	1	3	2	3	
7439-92-1	Dissolved Lead			TM30/PM14	ug/l	<5	1	16	<1	<1	<1	<1	
7439-97-6	Dissolved Mercury (sol)	1	95	TM30/PM14	ug/l	<1	N/A	< 0.05	< 0.05	< 0.05	<0.05	0.08	
7440-02-0	Dissolved Nickel			TM30/PM14	ug/l	<2	6	6	4	7	4	5	
7782-49-2	Dissolved Selenium			TM30/PM14	ug/l	<3	12	8	11	3	10	16	
7440-66-6	Dissolved Zinc			TM30/PM14	ug/l	<3	21	151	<1	32	<1	32	
VOCTIC	VOC TICs			TM15/PM10	None								
1634-04-4	Methyl Tertiary Butyl Ether	83,000	7,800,000	TM15/PM10	ug/l	<0.1	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	
71-43-2	Benzene	210	20,000	TM15/PM10	ug/l	<0.5	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	
108-88-3	Toluene (sol)	230,000	21,000,000	TM15/PM10	ug/l	<5	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	
100-41-4	Ethylbenzene (sol)	10,000	960,000	TM15/PM10	ug/l	<1	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	
P_M_XYLENE	Xylene (sol) (m)	9,500	940,000	TM15/PM10	ug/l	<2	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	
	SVOC MS												
108-95-2	Phenol			TM16/PM30	ug/l	<1	0.02	<0.01	0.18	<0.01	0.13	N/A	
	PAHs												
91-20-3	Naphthalene	220	23,000	TM16/PM30	ug/l	<1	< 0.01	< 0.01	<0.01	0.117	0.013	0.531	
208-96-8	Acenaphthylene (sol)	220,000	20,000,000	TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	<0.01	4.631	5.201	33.067	
83-32-9	Acenaphthene (sol)	170,000	15,000,000	TM16/PM30	ug/l	<1	< 0.01	< 0.01	< 0.01	1.836	1.222	6.966	
86-73-7	Fluorene (sol)	210,000	18,000,000	TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	2.027	0.031	1.611	
85-01-8	Phenanthrene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	3.303	0.067	2.803	
120-12-7	Anthracene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	1.901	0.019	2.221	
206-44-0	Fluoranthene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	2.407	<0.01	0.578	
129-00-0	Pyrene			TM16/PM30	ug/l	<0.5	<0.01	< 0.01	< 0.01	1.975	<0.01	1.094	
56-55-3	Benzo(a)anthracene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	1.867	<0.01	< 0.01	
218-01-9	Chrysene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	1.908	< 0.01	< 0.01	
BEN-BK-FLUORAN	Benzo(bk)fluoranthene			TM16/PM30	ug/l	<1	< 0.01	< 0.01	< 0.01	2.07	<0.01	< 0.01	
50-32-8	Benzo(a)pyrene			TM16/PM30	ug/l	<1	< 0.01	< 0.01	< 0.01	0.714	< 0.01	<0.01	
193-39-5	Indeno(123cd)pyrene			TM16/PM30	ug/l	<1	< 0.01	< 0.01	< 0.01	0.204	< 0.01	< 0.01	
53-70-3	Dibenzo(ah)anthracene			TM16/PM30	uq/l	<0.5	< 0.01	< 0.01	< 0.01	0.19	< 0.01	< 0.01	<u> </u>
191-24-2	Benzo(ghi)perylene			TM16/PM30	ug/l	< 0.5	< 0.01	< 0.01	< 0.01	0.248	< 0.01	< 0.01	<u> </u>
	Total 16 EPA PAHs						< 0.01	< 0.01	< 0.01	25.399	6.576	48.871	<u> </u>
	-												

Г

BH3	
Unknown	Unknown
round Water	Ground Water
04/09/2008	10/09/2008
1	<1
<1	<1
0.5	<0.4
3	<1
7	4
19	1
N/A	<0.05
7	2
<1	3
45	22
< 0.01	< 0.01
<0.01	< 0.01
<0.01	<0.01
<0.01	<0.01
<u.u1< th=""><th>SU.U I</th></u.u1<>	SU.U I
0.03	<0.01
0.00	-0.01
<0.01	0.07
<0.01	3,775
<0.01	1.099
< 0.01	1.552
< 0.01	2.106
<0.01	1.396
<0.01	1.135
<0.01	0.982
<0.01	0.647
<0.01	0.632
<0.01	0.903
<0.01	0.453
<0.01	0.252
<0.01	0.086
<0.01	0.217
< 0.01	15.304

Connolly Station Car P	ark, Dublin 1		000		Sam	ple ID		BH1		B	H2	
			OCS		De	epth	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
			O'CONNOR SUTTON CR	ONIN Insulting Engineers	Samp	le Type	Ground Water					
					Sampl	ed Date	04/09/2008	10/09/2008	17/09/2008	10/09/2008	17/09/2008	29/08/2008
CAS Number	Test	SoBRA 2017 Residential Development GACs	SoBRA 2017 Commercial Development GACs	Method	Units	LOD						
	TPH CWG											
	Aliphatics											
GTC05C06AL	>C5-C6 (sol)	1,900	190,000	TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTC06C08AL	>C6-C8 (sol)	1,500	150,000	TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTC08C10AL	>C8-C10 (sol)	57	5,700	TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTC10C12AL	>C10-C12 (sol)	37	3,600	TM5/PM16/PM30	ug/l	<5	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTC12C16AL	>C12-C16			TM5/PM16/PM30	ug/l	<10	< 0.01	<0.01	< 0.01	226	<0.01	< 0.01
GTC16C21AL	>C16-C21			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	1088	<0.01	< 0.01
GTC21C35AL	>C21-C35			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	15312	<0.01	< 0.01
GTC05C35AL	Total aliphatics C5-35			TM5/TM36/PM12/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	16626	<0.01	< 0.01
	Aromatics											
GTEC05EC07AR	>C5-EC7 (sol)	210,000	20,000,000	TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTEC07EC08AR	>EC7-EC8 (sol)	220,000	21,000,000	TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTEC08EC10AR	>EC8-EC10 (sol)	1,900	190,000	TM36/PM12	ug/l	<10	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTEC10EC12AR	>EC10-EC12 (sol)	6,800	660,000	TM5/PM16/PM30	ug/l	<5	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
GTEC12EC16AR	>EC12-EC16 (sol)	39,000	3,700,000	TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	18080	6553	48320
GTEC16EC21AR	>EC16-EC21			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	6049	< 0.01	<0.01
GTEC21EC35AR	>EC21-EC35			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	438	< 0.01	<0.01
GTEC05EC35AR	Total aromatics C5-35			TM5/TM36/PM12/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	24567	6553	48320
GTC05C35ALAR	Total TPH C2-C40			TM5/TM36/PM12/PM16/PM30	ug/l	<10	< 0.01	< 0.01	< 0.01	41193	6553	48320
7012-37-5	PCB 28			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35693-99-3	PCB 52			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
37680-73-2	PCB 101			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
31508-00-6	PCB 118			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35065-28-2	PCB 138			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35065-27-1	PCB 153			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35065-29-3	PCB 180			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
PCB_7_CON_TOTAL	Total 7 PCBs			TM17/PM30	ug/l	<0.7	N/A	N/A	N/A	N/A	N/A	N/A
16984-48-8	Fluoride			TM173/PM0	mg/l	<0.3						
14808-79-8	Sulphate as SO4			TM38/PM0	mg/l	<0.5	393	342	313	308	261	268
16887-00-6	Chloride			TM38/PM0	mg/l	<0.3	841	800	672	1792	1214	1790
CYANIDE_FREE	Free Cyanide			TM89/PM0	mg/l	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01
AMM_NITROGEN_N	Ammoniacal Nitrogen as N			TM38/PM0	mg/l	<0.03	<0.2	<0.2	<0.2	36	39.4	<0.2
ALK_TOT_CACO3	Total Alkalinity as CaCO3			TM75/PM0	mg/l	<1	472	520	508	799	701	573
				THEOREM			~		~			
JEL575	BOD (Settled)			TM58/PM0	mg/l	<1	<2	<2	<2	<2	<2	43
COD	COD (Settled)			TM57/PM0	mg/l	<7	204	366	<15	178	42	73
TOC	Total Organic Carbon			TM60/PM0	mg/l	<2	<2	<2	3	9	10	6
PH	pН				pH units		7.59	7.71	7.68	7.29	7.86	7.76

Notes:

N/A = Not Analysed/ No Analytical Data

BH3	
Unknown	Unknown
Ground Water	Ground Water
04/09/2008	10/09/2008
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	111
<0.01	761
<0.01	8376
<0.01	9248
<0.01	<0.01
<0.01	< 0.01
<0.01	< 0.01
<0.01	<0.01
<0.01	12045
<0.01	2434
<0.01	14782
<0.01	24030
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
<0.01	<0.01
39	19
62	38
<0.01	<0.01
NU.U I	NU.U I
<0.2	<0.2
162	90
9	<2
144	593
<2	12
7.89	7.92

Connolly Station Car Pa	ark, Dublin 1		0.000		Sam	ple ID		В	H4			BH5		В	H6
			OCS	•	De	pth	Unknown								
			O'CONNOR SUTTON CRO	NIN sulting Engineers	Samp	le Type	Ground Water								
					Sampl	ed Date	29/08/2008	04/09/2008	04/09/2008	10/09/2008	29/08/2008	10/09/2008	17/09/2008	10/09/2008	17/09/2008
CAS Number	Test	SoBRA 2017 Residential Development GACs	SoBRA 2017 Commercial Development GACs	Method	Units	LOD									
		·	•												
7440-36-0	Dissolved Antimony			TM30/PM14	ug/l	<2	5	<1	N/A	<1	3	3	4	<1	<1
7440-38-2	Dissolved Arsenic			TM30/PM14	ug/l	<2.5	5	2	N/A	<1	10	9	10	2	3
7440-43-9	Dissolved Cadmium			TM30/PM14	ug/l	<0.5	<0.4	0.5	N/A	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
7440-47-3	Total Dissolved Chromium			TM30/PM14	ug/l	<1.5	2	126	6	1	13	1	1	<1	<1
7440-50-8	Dissolved Copper			TM30/PM14	ug/l	<7	5	15	N/A	5	4	5	5	<1	2
7439-92-1	Dissolved Lead			TM30/PM14	ug/l	<5	2	34	N/A	1	2	4	<1	<1	3
7439-97-6	Dissolved Mercury (sol)	1	95	TM30/PM14	ug/l	<1	0.05	N/A	N/A	0.05	<0.05	<0.05	< 0.05	0.07	<0.05
7440-02-0	Dissolved Nickel			TM30/PM14	ug/l	<2	4	68	N/A	2	17	17	19	7	10
7782-49-2	Dissolved Selenium			TM30/PM14	ug/l	<3	8	2	N/A	<1	<1	<1	2	<1	<1
7440-66-6	Dissolved Zinc			TM30/PM14	ug/l	<3	34	104	N/A	18	57	55	32	27	27
VOCTIC	VOC TICs			TM15/PM10	None										
1634-04-4	Methyl Tertiary Butyl Ether	83,000	7,800,000	TM15/PM10	ug/l	<0.1	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
71-43-2	Benzene	210	20,000	TM15/PM10	ug/l	<0.5	< 0.01	<0.01	N/A	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
108-88-3	Toluene (sol)	230,000	21,000,000	TM15/PM10	ug/l	<5	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
100-41-4	Ethylbenzene (sol)	10,000	960,000	TM15/PM10	ug/l	<1	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
P_M_XYLENE	Xylene (sol) (m)	9,500	940,000	TM15/PM10	ug/l	<2	<0.01	<0.01	N/A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	SVOC MS														
108-95-2	Phenol			TM16/PM30	ug/l	<1	N/A	0.03	N/A	<0.01	N/A	<0.01	0.09	<0.01	0.03
	PAHs														
91-20-3	Naphthalene	220	23,000	TM16/PM30	ug/l	<1	0.028	< 0.01	N/A	< 0.01	0.02	< 0.01	< 0.01	0.013	0.382
208-96-8	Acenaphthylene (sol)	220,000	20,000,000	TM16/PM30	ug/l	<0.5	0.023	< 0.01	N/A	< 0.01	0.011	< 0.01	< 0.01	0.013	1.147
83-32-9	Acenaphthene (sol)	170,000	15,000,000	TM16/PM30	ug/l	<1	0.022	< 0.01	N/A	< 0.01	0.029	< 0.01	< 0.01	0.038	1.693
86-73-7	Fluorene (sol)	210,000	18,000,000	TM16/PM30	ug/l	<0.5	0.016	< 0.01	N/A	< 0.01	0.04	< 0.01	< 0.01	0.047	1.781
85-01-8	Phenanthrene			TM16/PM30	ug/i	<0.5	0.034	< 0.01	N/A	< 0.01	0.159	<0.01	<0.01	0.088	3.062
120-12-7	Anthracene			TM16/PM30	ug/i	<0.5	0.013	< 0.01	N/A	< 0.01	0.043	<0.01	<0.01	0.029	0.596
206-44-0	Fluoranthene			TM16/PM30	ug/i	<0.5	0.011	< 0.01	N/A	< 0.01	0.083	<0.01	<0.01	0.045	1.318
129-00-0	Pyrene			TM16/PM30	ug/i	<0.5	0.011	< 0.01	N/A	< 0.01	0.075	<0.01	<0.01	0.041	1.075
56-55-3	Benzo(a)anthracene			TM16/PM30	ug/i	<0.5	<0.01	<0.01	N/A	<0.01	0.027	<0.01	<0.01	0.013	0.43
					ug/i	<0.5	< 0.01	<0.04	IN/A	< 0.01	0.026	<0.04	<0.04	0.01	0.311
BEN-BK-FLUUKAN	Benzo(DK)IIUOrantnene				ug/i	<1	0.017	<0.04	IN/A	< 0.01	0.036	<0.04	<0.01	0.01	0.321
5U-32-δ 102.00.5	Benzo(a)pyrene				ug/i	<1	<0.01	<0.04	IN/A	< 0.01	0.015	<0.04	<0.01	<0.04	0.148
193-39-5					ug/i	<1	<0.01	<0.04	IN/A	< 0.01	0.012	<0.04	<0.01	<0.04	0.009
55-70-3 101-24-2	Benzo(ahi)populopo				ug/i	<0.5	<0.01	<0.01	IN/A	<0.01	0.018	<0.01	<0.01	<0.01	0.03
191-24-2				TIVETO/PIVI30	ug/i	<u.5< td=""><td>0.000</td><td><0.01</td><td>IN/A</td><td><0.01</td><td>0.014</td><td><0.04</td><td><0.04</td><td><0.01</td><td>0.082</td></u.5<>	0.000	<0.01	IN/A	<0.01	0.014	<0.04	<0.04	<0.01	0.082
	I UTAL TO EPA PARS				1		0.200	NU.U I	IN/A	<u>∼0.01</u>	0.000	<u>\U.UI</u>	~U.U I	0.347	12.440

Table 4: Groundwater F	fuman nealth Risk Site investigation	011 2006					T				-	
Connolly Station Car Pa	ark, Dublin 1		0000	•	Sam	ple ID		B	H4			BH5
			OCS		De	pth	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
			O'CONNOR SUTTON CRO Multidisciplinary Con	nsulting Engineers	Samp	le Type	Ground Water					
				-	Sampl	ed Date	29/08/2008	04/09/2008	04/09/2008	10/09/2008	29/08/2008	10/09/2008
CAS Number	Test	SoBRA 2017 Residential Development GACs	SoBRA 2017 Commercial Development GACs	Method	Units	LOD						
	TPH CWG											
	Aliphatics											
GTC05C06AL	>C5-C6 (sol)	1,900	190,000	TM36/PM12	ug/l	<10	< 0.01	<0.01	N/A	<0.01	< 0.01	< 0.01
GTC06C08AL	>C6-C8 (sol)	1,500	150,000	TM36/PM12	ug/l	<10	< 0.01	<0.01	N/A	< 0.01	< 0.01	< 0.01
GTC08C10AL	>C8-C10 (sol)	57	5,700	TM36/PM12	ug/l	<10	< 0.01	<0.01	N/A	<0.01	< 0.01	< 0.01
GTC10C12AL	>C10-C12 (sol)	37	3,600	TM5/PM16/PM30	ug/l	<5	< 0.01	<0.01	N/A	< 0.01	< 0.01	< 0.01
GTC12C16AL	>C12-C16			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	N/A	<0.01	< 0.01	< 0.01
GTC16C21AL	>C16-C21			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	N/A	<0.01	< 0.01	< 0.01
GTC21C35AL	>C21-C35			TM5/PM16/PM30	ug/l	<10	< 0.01	< 0.01	N/A	<0.01	< 0.01	< 0.01
GTC05C35AL	Total aliphatics C5-35			TM5/TM36/PM12/PM16/PM30	ug/l	<10	< 0.01	<0.01	N/A	<0.01	< 0.01	< 0.01
	Aromatics											
GTEC05EC07AR	>C5-EC7 (sol)	210,000	20,000,000	TM36/PM12	ug/l	<10	< 0.01	< 0.01	N/A	< 0.01	< 0.01	<0.01
GTEC07EC08AR	>EC7-EC8 (sol)	220,000	21,000,000	TM36/PM12	ug/l	<10	< 0.01	< 0.01	N/A	< 0.01	< 0.01	< 0.01
GTEC08EC10AR	>EC8-EC10 (sol)	1,900	190,000	TM36/PM12	ug/l	<10	< 0.01	<0.01	N/A	< 0.01	< 0.01	< 0.01
GTEC10EC12AR	>EC10-EC12 (sol)	6,800	660,000	TM5/PM16/PM30	ug/l	<5	< 0.01	<0.01	N/A	< 0.01	< 0.01	< 0.01
GTEC12EC16AR	>EC12-EC16 (sol)	39,000	3,700,000	TM5/PM16/PM30	ug/l	<10	130	<0.01	N/A	< 0.01	445.2	< 0.01
GTEC16EC21AR	>EC16-EC21			TM5/PM16/PM30	ug/l	<10	35	< 0.01	N/A	< 0.01	101	< 0.01
GTEC21EC35AR	>EC21-EC35			TM5/PM16/PM30	ug/l	<10	10	< 0.01	N/A	< 0.01	32	< 0.01
GTEC05EC35AR	Total aromatics C5-35			TM5/TM36/PM12/PM16/PM30	ug/l	<10	175	< 0.01	N/A	< 0.01	578.2	< 0.01
GTC05C35ALAR	Total TPH C2-C40			TM5/TM36/PM12/PM16/PM30	ug/l	<10	175	<0.01	N/A	<0.01	578.2	<0.01
7012-37-5	PCB 28			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35693-99-3	PCB 52			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
37680-73-2	PCB 101			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
31508-00-6	PCB 118			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35065-28-2	PCB 138			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35065-27-1	PCB 153			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
35065-29-3	PCB 180			TM17/PM30	ug/l	<0.1	N/A	N/A	N/A	N/A	N/A	N/A
PCB_7_CON_TOTAL	Total 7 PCBs			TM17/PM30	ug/l	<0.7	N/A	N/A	N/A	N/A	N/A	N/A
16984-48-8	Fluoride			TM173/PM0	mg/l	<0.3						
14808-79-8	Sulphate as SO4			TM38/PM0	mg/l	<0.5	302	183	N/A	128	952	1021
16887-00-6	Chloride			TM38/PM0	mg/l	<0.3	925	624	N/A	493	29	35
CYANIDE_FREE	Free Cyanide			TM89/PM0	mg/l	<0.01	0.01	<0.01	N/A	<0.01	< 0.01	<0.01
AMM_NITROGEN_N	Ammoniacal Nitrogen as N			TM38/PM0	mg/l	< 0.03	< 0.2	< 0.2	N/A	<0.2	8.9	9.6
ALK_TOT_CACO3	I otal Alkalinity as CaCO3			TM75/PM0	mg/i	<1	610	391	N/A	281	1610	1564
IEI 575	BOD (Sattled)				ma/l	~1	Δ	2	NI/A	< 2	<)	03
COD	COD (Settled)			TM57/PM0	mg/l	<7	<15	120	N/A	220	~∠ 807	280
TOC	Total Organic Carbon				mg/l	<2	6	<2	N/A	22.9	7	7
рн	nH				nH unite	~2	10.05	7 57	N/A	7.8	7 07	7 02

Notes:

N/A = Not Analysed/ No Analytical Data

		В	H6
n	Unknown	Unknown	Unknown
ater	Ground Water	Ground Water	Ground Water
08	17/09/2008	10/09/2008	17/09/2008
	<0.01	<0.01	<0.01
	<0.01	<0.01	<0.01
	<0.01	<0.01	<0.01
	<0.01	<0.01	<0.01
	<0.01	<0.01	<0.01
	<0.01	<0.01	<0.01
	<0.01	<0.01	<0.01
	<0.01	<0.01	<0.01
	< 0.01	< 0.01	< 0.01
	< 0.01	< 0.01	< 0.01
	<0.01	<0.01	< 0.01
	<0.01	<0.01	<0.01
	201	301	< 0.01
	<0.01	<0.01	<0.01
	261	336	<0.01
	261	336	< 0.01
	N/A	N/A	N/A
	976	91	89
	29	20	15
	-0.04	-0.01	-0.01
	<0.01	<0.01	<0.01
	8.9	17.4	0.8
	1552	776	455
	<2	<2	<2
	<15	402	327
	7	7	14
	7.58	7.14	7.42

Vertice <	Connolly Station Car Pa	ark, Dublin 1		0000		Sam	ple ID		BH7			WS7			WS11	
Concernent survey Contents provided Sample Type Ground Water				OCS	•	De	epth	Unknown								
CAS Number Test SoBRA 2017 (mesidential Development GACs SoBRA 2017 (mesidential Development GACs Nethod Units LOD LOD <thld< th=""> <thld< th="" th<=""><th></th><th></th><th></th><th>O'CONNOR SUTTON CRO</th><th>NIN sulting Engineers</th><th>Samp</th><th>ole Type</th><th>Ground Water</th><th>Ground Water</th><th>Ground Water</th><th>Ground Water</th><th>Ground Water</th><th>Ground Water</th><th>Ground Water</th><th>Ground Water</th><th>Ground Water</th></thld<></thld<>				O'CONNOR SUTTON CRO	NIN sulting Engineers	Samp	ole Type	Ground Water								
CAS Number Test SoBRA 2017 Development GACs SoBRA 2017 Commercial Development GACs Method Units LOD Image: Commercial Development GACs Method Units LOD Image: Commercial Development GACs Image: Commercial Development GACs Image: Commercial De				Multidisciplinary con	suiting Engineers	Samp	led Date	29/08/2008	04/09/2008	10/09/2008	29/08/2008	04/09/2008	10/09/2008	29/08/2008	04/09/2008	10/09/2008
Image: Construct of the second sec	CAS Number	Test	SoBRA 2017 Residential Development GACs	SoBRA 2017 Commercial Development GACs	Method	Units	LOD									
7440.36-0 Dissolved Antimony C TM30/PM14 ug/l <2																
7440-38-2 Dissolved Arsenic Image of the second se	7440-36-0	Dissolved Antimony			TM30/PM14	ug/l	<2	<1	<1	1	11	21	20	<1	3	2
7440-3-9Dissolved CadmiumImage of the second of t	7440-38-2	Dissolved Arsenic			TM30/PM14	ug/l	<2.5	5	8	8	3	8	1	2	6	4
Total Dissolved Chromium Cotal D	7440-43-9	Dissolved Cadmium			TM30/PM14	ug/l	<0.5	1.6	1.3	1.3	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
7440-50-8Dissolved CopperImage	7440-47-3	Total Dissolved Chromium			TM30/PM14	ug/l	<1.5	7	2	3	7	1	<1	9	<1	<1
7439-92-1Dissolved LeadImage: Dissolved Mercury (sol)195TM30/PM14ug/l <5 <1 412 35 26 62 2 $7439-97-6$ Dissolved Mercury (sol)195TM30/PM14ug/l <1 <0.05 NA 0.06 <0.05 NA <0.05 <0.05 NA <0.05 NA <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 NA <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <t< th=""><td>7440-50-8</td><td>Dissolved Copper</td><td></td><td></td><td>TM30/PM14</td><td>ug/l</td><td><7</td><td>8</td><td>8</td><td>4</td><td>5</td><td>9</td><td>5</td><td>4</td><td>9</td><td>1</td></t<>	7440-50-8	Dissolved Copper			TM30/PM14	ug/l	<7	8	8	4	5	9	5	4	9	1
7439-97-6 Dissolved Mercury (sol) 1 95 TM30/PM14 ug/l <1	7439-92-1	Dissolved Lead			TM30/PM14	ug/l	<5	<1	4	1	2	35	2	6	62	2
7440-02-0 Dissolved Nickel Image: Constraint of the state of the	7439-97-6	Dissolved Mercury (sol)	1	95	TM30/PM14	ug/l	<1	<0.05	N/A	0.06	<0.05	N/A	<0.05	<0.05	N/A	<0.05
7782-49-2Dissolved SeleniumImage: Construct of the con	7440-02-0	Dissolved Nickel			TM30/PM14	ug/l	<2	14	13	13	10	10	8	8	15	12
7440-66-6Dissolved ZincImage: Constraint of the	7782-49-2	Dissolved Selenium			TM30/PM14	ug/l	<3	31	28	27	1	10	<1	<1	<1	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7440-66-6	Dissolved Zinc			TM30/PM14	ug/l	<3	35	25	17	34	36	23	76	72	15
VOCTIC VOC TICs Image: Matrix State of the state of																
1634-04-4 Methyl Tertiary Butyl Ether 83,000 7,800,000 TM15/PM10 ug/l <0.1	VOCTIC	VOC TICs			TM15/PM10	None										
71-43-2 Benzene 210 20,000 TM15/PM10 ug/l <0.01	1634-04-4	Methyl Tertiary Butyl Ether	83,000	7,800,000	TM15/PM10	ug/l	<0.1	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	14	17
108-88-3 Toluene (sol) 230,000 21,000,000 TM15/PM10 ug/l <5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 19 <0.01 <0.01	71-43-2	Benzene	210	20,000	TM15/PM10	ug/l	<0.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31	<0.01
	108-88-3	Toluene (sol)	230,000	21,000,000	TM15/PM10	ug/l	<5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	19	<0.01	<0.01
100-41-4 Ethylbenzene (sol) 10,000 960,000 TM15/PM10 ug/l <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 211 13 15	100-41-4	Ethylbenzene (sol)	10,000	960,000	TM15/PM10	ug/l	<1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	211	13	15
P_M_XYLENE Xylene (sol) (m) 9,500 940,000 TM15/PM10 ug/l <2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 527 35 23	P_M_XYLENE	Xylene (sol) (m)	9,500	940,000	TM15/PM10	ug/l	<2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	527	35	23
SVOC MS		SVOC MS														
108-95-2 Phenol TM16/PM30 ug/l <1 N/A <0.01 <0.01 N/A 0.02 <0.01 N/A 0.03 <0.01	108-95-2	Phenol			TM16/PM30	ug/l	<1	N/A	<0.01	<0.01	N/A	0.02	<0.01	N/A	0.03	<0.01
PAHs PAHs		PAHs														
91-20-3 Naphthalene 220 23,000 TM16/PM30 ug/l <1 0.031 <0.01 <0.01 0.037 <0.01 <0.01 0.617 <0.01 <0.01	91-20-3	Naphthalene	220	23,000	TM16/PM30	ug/l	<1	0.031	<0.01	< 0.01	0.037	<0.01	<0.01	0.617	<0.01	<0.01
208-96-8 Acenaphtylene (sol) 220,000 20,000,000 TM16/PM30 ug/l <0.5 <0.01 <0.01 <0.01 0.018 <0.01 <0.01 0.018 2.35 <0.01 0.018	208-96-8	Acenaphthylene (sol)	220,000	20,000,000	TM16/PM30	ug/l	<0.5	<0.01	<0.01	<0.01	0.018	<0.01	<0.01	2.35	<0.01	0.018
83-32-9 Acenaphthene (sol) 170,000 15,000,000 TM16/PM30 ug/l <1 0.011 <0.01 <0.01 0.032 <0.01 <0.01 2.996 <0.01 0.045	83-32-9	Acenaphthene (sol)	170,000	15,000,000	TM16/PM30	ug/l	<1	0.011	<0.01	<0.01	0.032	<0.01	<0.01	2.996	<0.01	0.045
86-73-7 Fluorene (sol) 210,000 18,000,000 TM16/PM30 ug/l <0.5 0.025 <0.01 <0.01 0.079 <0.01 <0.01 1.73 <0.01 0.045	86-73-7	Fluorene (sol)	210,000	18,000,000	TM16/PM30	ug/l	<0.5	0.025	<0.01	<0.01	0.079	<0.01	<0.01	1.73	<0.01	0.045
85-01-8 Phenanthrene TM16/PM30 ug/l <0.5 0.04 <0.01 0.187 <0.01 <0.01 3.956 <0.01 0.061	85-01-8	Phenanthrene			TM16/PM30	ug/l	<0.5	0.04	<0.01	<0.01	0.187	<0.01	<0.01	3.956	<0.01	0.061
120-12-7 Anthracene TM16/PM30 ug/l <0.5 <0.01 <0.01 <0.01 0.086 <0.01 <0.01 0.48 <0.01 0.025	120-12-7	Anthracene			TM16/PM30	ug/l	<0.5	<0.01	<0.01	<0.01	0.086	<0.01	<0.01	0.48	<0.01	0.025
206-44-0 Fluoranthene TM16/PM30 ug/l <0.5 <0.01 <0.01 <0.01 0.141 <0.01 <0.01 1.792 <0.01 0.037	206-44-0	Fluoranthene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	<0.01	0.141	< 0.01	<0.01	1.792	<0.01	0.037
129-00-0 Pyrene TM16/PM30 ug/l <0.5 <0.01 <0.01 0.117 <0.01 <0.01 1.554 <0.01 0.03	129-00-0	Pyrene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	0.117	< 0.01	<0.01	1.554	<0.01	0.03
56-55-3 Benzo(a)anthracene TM16/PM30 ug/l <0.5 <0.01 <0.01 <0.01 0.085 <0.01 <0.01 0.635 <0.01 <0.01	56-55-3	Benzo(a)anthracene			TM16/PM30	ug/l	<0.5	< 0.01	<0.01	< 0.01	0.085	< 0.01	<0.01	0.635	<0.01	< 0.01
218-01-9 Chrysene TM16/PM30 ug/l <0.5 <0.01 <0.01 0.083 <0.01 <0.01 0.545 <0.01 <0.01	218-01-9	Chrysene			TM16/PM30	ug/l	<0.5	<0.01	< 0.01	< 0.01	0.083	< 0.01	<0.01	0.545	< 0.01	< 0.01
BEN-BK-FLUORAN Benzo(bk)fluoranthene TM16/PM30 ug/l <1 <0.01 <0.01 <0.01 0.06 <0.01 <0.01 0.551 <0.01 <0.01	BEN-BK-FLUORAN	Benzo(bk)fluoranthene			TM16/PM30	ug/l	<1	<0.01	< 0.01	< 0.01	0.06	< 0.01	<0.01	0.551	< 0.01	< 0.01
50-32-8 Benzo(a)pyrene TM16/PM30 ug/l <1 <0.01 <0.01 <0.01 0.053 <0.01 <0.01 0.206 <0.01 <0.01	50-32-8	Benzo(a)pyrene			TM16/PM30	ug/l	<1	<0.01	< 0.01	< 0.01	0.053	< 0.01	<0.01	0.206	< 0.01	< 0.01
193-39-5 Indeno(123cd)pyrene TM16/PM30 ug/l <1 <0.01 <0.01 <0.01 0.041 <0.01 <0.01 0.17 <0.01 <0.01	193-39-5	Indeno(123cd)pyrene			TM16/PM30	ug/l	<1	< 0.01	< 0.01	< 0.01	0.041	< 0.01	<0.01	0.117	< 0.01	< 0.01
53-70-3 Dibenzo(ah)anthracene TM16/PM30 ug/l <0.5 <0.01 <0.01 <0.01 0.029 <0.01 <0.01 0.077 <0.01 <0.01	53-70-3	Dibenzo(ah)anthracene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	0.029	<0.01	<0.01	0.077	<0.01	<0.01
191-24-2 Benzo(ghi)perylene TM16/PM30 ug/l <0.5 <0.01 <0.01 <0.01 0.057 <0.01 <0.01 0.128 <0.01 <0.01	191-24-2	Benzo(ghi)perylene			TM16/PM30	ug/l	<0.5	< 0.01	< 0.01	< 0.01	0.057	< 0.01	<0.01	0.128	< 0.01	< 0.01
Total 16 EPA PAHs Total 16 EPA PAHs Output Output <td></td> <td>Total 16 EPA PAHs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.149</td> <td>< 0.01</td> <td>< 0.01</td> <td>1.105</td> <td>< 0.01</td> <td><0.01</td> <td>17.734</td> <td>< 0.01</td> <td>0.275</td>		Total 16 EPA PAHs						0.149	< 0.01	< 0.01	1.105	< 0.01	<0.01	17.734	< 0.01	0.275

Connolly Station Car Pa	ark, Dublin 1		0 0 0 0		Sam	ple ID		BH7			WS7			WS11	
-			OCS		De	pth	Unknown								
			O'CONNOR SUTTON CRO	NIN	Samp	le Type	Ground Water								
			Multidisciplinary Con	isulting Engineers	Sampl	ed Date	29/08/2008	04/09/2008	10/09/2008	29/08/2008	04/09/2008	10/09/2008	29/08/2008	04/09/2008	10/09/2008
CAS Number	Test	SoBRA 2017 Residential Development GACs	SoBRA 2017 Commercial Development GACs	Method	Units	LOD									
	TPH CWG														
	Aliphatics														
GTC05C06AL	>C5-C6 (sol)	1,900	190,000	TM36/PM12	ug/l	<10	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	138	1004	34
GTC06C08AL	>C6-C8 (sol)	1,500	150,000	TM36/PM12	ug/l	<10	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	1453	1927	454
GTC08C10AL	>C8-C10 (sol)	57	5,700	TM36/PM12	ug/l	<10	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	948.8	1649.6	315.6
GTC10C12AL	>C10-C12 (sol)	37	3,600	TM5/PM16/PM30	ug/l	<5	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	1272.8	1403.2	344.4
GTC12C16AL	>C12-C16			TM5/PM16/PM30	ug/l	<10	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	1734	103.1	1152
GTC16C21AL	>C16-C21			TM5/PM16/PM30	ug/l	<10	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	444	66.7	443
GTC21C35AL	>C21-C35			TM5/PM16/PM30	ug/l	<10	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01
GTC05C35AL	Total aliphatics C5-35			TM5/TM36/PM12/PM16/PM30	ug/l	<10	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	5990.6	6153.6	2743
	Aromatics														
GTEC05EC07AR	>C5-EC7 (sol)	210,000	20,000,000	TM36/PM12	ug/l	<10	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	31	<0.01
GTEC07EC08AR	>EC7-EC8 (sol)	220,000	21,000,000	TM36/PM12	ug/l	<10	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	19	<0.01	<0.01
GTEC08EC10AR	>EC8-EC10 (sol)	1,900	190,000	TM36/PM12	ug/l	<10	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	2161.2	2522.4	511.4
GTEC10EC12AR	>EC10-EC12 (sol)	6,800	660,000	TM5/PM16/PM30	ug/l	<5	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	1909.2	2104.8	516.6
GTEC12EC16AR	>EC12-EC16 (sol)	39,000	3,700,000	TM5/PM16/PM30	ug/l	<10	99	<0.01	< 0.01	660	<0.01	183	14858	4337	10672
GTEC16EC21AR	>EC16-EC21			TM5/PM16/PM30	ug/l	<10	13	<0.01	< 0.01	269	< 0.01	61	1848	<0.01	1131
GTEC21EC35AR	>EC21-EC35			TM5/PM16/PM30	ug/l	<10	<0.01	<0.01	< 0.01	86	< 0.01	24	105	<0.01	112
GTEC05EC35AR	Total aromatics C5-35			TM5/TM36/PM12/PM16/PM30	ug/l	<10	112	<0.01	<0.01	1015	<0.01	268	20900.4	8995.2	12943
GTC05C35ALAR	Total TPH C2-C40			TM5/TM36/PM12/PM16/PM30	ug/l	<10	112	<0.01	<0.01	1015	<0.01	268	26891	15148.8	15686
7012-37-5	PCB 28			TM17/PM30	ug/l	<0.1	N/A								
35693-99-3	PCB 52			TM17/PM30	ug/l	<0.1	N/A								
37680-73-2	PCB 101			TM17/PM30	ug/l	<0.1	N/A								
31508-00-6	PCB 118			TM17/PM30	ug/l	<0.1	N/A								
35065-28-2	PCB 138			TM17/PM30	ug/l	<0.1	N/A								
35065-27-1	PCB 153			TM17/PM30	ug/l	<0.1	N/A								
35065-29-3	PCB 180			TM17/PM30	ug/l	<0.1	N/A								
PCB_7_CON_TOTAL	Total 7 PCBs			TM17/PM30	ug/l	<0.7	N/A								
16984-48-8	Fluoride			TM173/PM0	mg/l	<0.3									
14808-79-8	Sulphate as SO4			TM38/PM0	mg/l	<0.5	841	1003	992	777	826	770	72	73	101
16887-00-6	Chloride			TM38/PM0	mg/l	<0.3	6475	7208	7750	15	2011	16	14	17	17
CYANIDE_FREE	Free Cyanide			TM89/PM0	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
	Ammoniacal Nitrogen as N				ma/l	<0.03	2	53	15	6.9	4.0	2	3 /	Λ	20.6
ALK_TOT_CACO3	Total Alkalinity as CaCO3			TM75/PM0	mg/l	<0.03	1986	1806	1906	1182	1337	982	450	548	748
_ _					Ť										
JEL575	BOD (Settled)			TM58/PM0	mg/l	<1	2	<2	<2	18	<2	<2	4	4	<2
COD	COD (Settled)			TM57/PM0	mg/l	<7	72	350	660	2242	696	574	912	339	35
TOC	Total Organic Carbon			TM60/PM0	mg/l	<2	4	<2	3	7	<2	7	10	<2	7
PH	pH				pH units		7.37	7.95	7.54	7.33	7.58	7.57	7.14	7.61	7.51

Notes:

N/A = Not Analysed/ No Analytical Data

Borehole ID	Date	Sample Time	Response Zone stratum	Stable CH4 %	CH4% Peak	Stable CO2 %	CO2% Peak	O2 %	Bal %	H2S stable ppm	H2S peak ppm	CO stable ppm	CO peak ppm	Atmospheric Pressure mb	Relative pressure mb	Flow I/hr	Groundwater level mbGL
	29/08/2008	-		-	0.10	-	2.90	17.20	-	-	-	-	-	1017.00	-	0.20	-
MCC	04/09/2008	-	MC	-	0.10	-	5.00	13.10	-	-	-	-	-	990.00	-	0.20	-
VV 50	10/09/2008	-	MG	-	0.10	-	3.50	14.50	-	-	-	-	-	1000.00	-	0.00	-
	17/09/2008	-		_	0.10	-	6.40	8.50		-	-	-	-	1019.00	-	0.00	-
	29/08/2008	-		-	0.10	-	1.90	18.60	-	-	-	-	-	1016.00	-	0.00	-
MCO	04/09/2008	-	MC	-	0.10	-	1.90	18.60	-	-	-	-	-	991.00	-	0.20	-
VV 59	10/09/2008	-	MG	-	0.10	-	0.70	19.90	-	-	-	-	-	999.00	-	0.10	-
	17/09/2008	-		-	0.20	-	0.70	20.00	-	-	-	-	-	1019.00	-	0.10	-
	29/08/2008	-		-	0.10	-	0.10	20.30	-	-	-	-	-	1017.00	-	0.00	-
WS10	04/09/2008	-	MC	-	0.10	-	0.10	20.10	-	-	-	-	-	992.00	-	0.10	-
W310	10/09/2008	-	IVIG	-	0.10	-	0.10	20.10	-	-	-	-	-	999.00	-	0.00	
	17/09/2008	-		-	5.60	-	0.20	19.20	-	-	-	-	-	1019.00	-	0.00	-
	04/09/2008	-		-	0.40	-	1.50	19.60	-	-	-	-	-	992.00	-	0.10	-
WS12	10/09/2008	-	MG	_	0.10	-	1.50	19.10		-	-		-	998.00	-	0.10	-
	17/09/2008	-		-	0.10	-	1.30	19.30	-	-	-	-	-	1019.00	-	0.10	-
	29/08/2008	-		-	0.10	-	7.70	9.10	-	-	-	-	-	1017.00	-	0.20	-
MCO	04/09/2008	-	MOISET	-	0.10	-	9.40	7.60	-	-	-	-	-	990.00	-	0.20	-
0000	10/09/2008	-	IVIG/SET	-	0.10	-	10.60	7.80	-	-	-	-	-	999.00	-	0.10	
	17/09/2008	-		-	0.10	-	10.20	7.50		-	-	-	-	1019.00	-	0.20	-
	29/08/2008	-		-	0.10	-	3.00	15.70	-	-	-	-	-	1016.00	-	0.10	-
W67	04/09/2008	-	MC/PC	_	0.10	-	2.60	16.10		-	-		-	990.00	-	0.00	-
VV37	10/09/2008	-	MG/BC	-	0.10	-	0.20	20.20	-	-	-	-	-	1001.00	-	0.00	
	17/09/2008	-		-	0.10	-	2.50	16.20	-	-	-	-	-	1019.00	-	0.00	-
	29/08/2008	-		-	0.20	-	3.80	15.00	-	-	-	-	-	1017.00	-	0.20	-
W611	04/09/2008	-		-	100.00	-	9.30	0.00	-	-	-	-	-	991.00	-	0.10	-
W211	10/09/2008	-	SLI/BC	_	1.20	-	5.70	10.00	-	-	-	-	-	1001.00	-	0.20	-
	17/09/2008	-		-	69.70	-	8.70	0.10		-	-	-	-	1019.00	-	0.10	-

MG : Made Ground SLT : Silt Clay BC : Boulder Clay

- : No data available

8909 Conpolly Station Car Park			Multidisciplin	ary Consulting	Engineers				1	1				1		1				1				1		
Dublin 1						Sample Ide	ntity WS1	WS1	WS1	WS2	WS2	WS2	WS3	WS4	WS5	WS6	WS6	WS8	WS11	BH3	BH3	BH4	BH4	BH4	BH5	BH7
	A	В	C1	C2	D	epth (mbGl) 1	3	5	1	3	5	4	2	2	1	4	2	2	1	2	1	5-5.3	6-6.3	2	6.5
Analyte	Inert	Inert (IMS)	Non-Haz	Non-Haz with Asbestos	Hazardous	DD Ur	it																			
HazWaste Assessment Result							Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Hazardous	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz	Non-Haz
Overall Assessment Result							B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	D Hazardous	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz	B Non-Haz
Solid Waste Analysis																										
Total Organic Carbon [#]	3	3	-	-	6	%	7.6	8.3		5.4	5.4	11.2	1.7	3.6	5.3	7.5	1.6	8.3	2.2	1.1	1.5	7.6	N/A	N/A	3.1	0.5
Sum of BTEX	6	6	see HWOL	see HWOL	see HWOL	mg	kg <0.04	< 0.04		< 0.04	< 0.04	< 0.04	N/A	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.33	<0.04	< 0.04	< 0.04	N/A	N/A	< 0.04	< 0.04
Sum of 7 PCBs [#]	1	1	see HWOI	see HWOI	see HWOI	mg	kg <1	N/A		<1	N/A	N/A	<1		<1	<1	<1	<1	<1	<1	N/A	< 0.001	N/A	N/A		<1
PAH Sum of 6 [#]	2	-	see HWOI	see HWOI	see HWOI	mg	kg 35.766	2,405	3,384	15.866	4.621	1.842	8.2	0.994	2.5	1.612	0.952	1.833	6.1	0.111	<1	6.267	N/A	N/A	4,291	<1.6
PAH Sum of 17	6	100	See HWOL	See HWOL		ma	kg 77./19	5.093	6.812	40.825	9.437	3 513	22 756	2 283	4 368	3 447	2 508	3 629	17 294	0.315	6 266	11 733	N/A	N/A	8 512	<1
Mineral Oil Calculation	-	500	see HWOL	see HWOL	see HWOL	mg,	kg <1	N/A	0.012	<1	5.457	5.515	<1	2.205	<1	5.447	<1	<1	<1	<1	0.500	11.755	175	17.5	0.512	<1
CEN 10:1 Leachate																										
Dissolved Antimony (A10)	0.06	0.06	0.7	0.7	5	mg,	kg 0.07	0.05	0.03	0.04	0.04	0.04	0.06	0.07	0.02	0.04	0.11	0.09	0.13	0.07	0.04	0.03	1.3	< 0.075	0.01	0.04
Dissolved Arsenic (A10)	0.5	0.5	2	2	25	mg,	kg 0.09	0.08	< 0.01	0.1	0.12	< 0.01	0.02	0.14	< 0.01	0.04	0.04	0.14	0.01	2.43	1.51	0.02	0.73	0.29	<0.01	< 0.01
Dissolved Barium (A10)	20	20	100	100	300	mg,	kg 2.49	2.36	2.5	2.05	2.14	2.47	3.22	1.8	2.53	1.81	3	2.31	2.71	7.14	8.86	2.33	3.2	3	2.42	3.15
Dissolved Cadmium (A10)	0.04	0.04	1	1	5	mg,	kg <0.004	< 0.004	0.012	< 0.004	< 0.004	0.007	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.022	< 0.022	< 0.004	< 0.004
Dissolved Chromium (A10)	0.5	0.5	10	10	70	mg,	kg 0.02	0.03	0.03	0.02	0.04	0.02	0.02	0.08	0.04	< 0.01	< 0.01	0.02	<0.01	3.74	2.15	0.04	<0.1	< 0.1	< 0.01	<0.01
Dissolved Copper (A10)	2	2	50	50	100	mg,	kg 0.36	0.53	0.32	0.22	0.28	0.28	0.57	0.34	0.41	1.12	0.5	0.5	0.38	2.37	0.4	0.26	0.27	0.57	0.38	0.34
Dissolved Lead (A10)	0.5	0.5	10	10	50	mg,	kg <0.01	< 0.01	0.07	< 0.01	< 0.01	0.01	< 0.01	0.04	0.03	0.06	0.06	< 0.01	0.03	0.05	0.03	< 0.01	0.17	0.04	0.01	0.01
Dissolved Molybdenum (A10)	0.5	0.5	10	10	30	mg,	kg 0.12	0.23	0.37	0.33	0.18	0.29	0.39	0.03	0.32	0.06	0.64	0.26	0.48	0.06	0.04	0.13	4.5	2.4	0.17	0.11
Dissolved Nickel (A10)	0.4	0.4	10	10	40	mg,	kg <0.01	< 0.01	0.08	< 0.01	< 0.01	0.03	0.04	0.17	0.12	0.08	0.11	< 0.01	0.13	3.75	3.39	<0.01	0.39	0.87	0.06	0.14
Dissolved Selenium (A10)	0.1	0.1	6	6	7	mg,	kg 0.04	0.02	< 0.01	0.04	0.02	0.01	0.03	< 0.01	<0.01	< 0.01	< 0.01	0.03	<0.01	0.67	0.53	0.02	0.5	0.5	<0.01	0.19
Dissolved Zinc (A10)	4	4	50	50	200	mg,	kg 0.15	0.17	1.33	0.04	0.11	0.96	0.85	0.17	0.44	0.28	0.39	0.09	0.73	0.83	0.49	0.07	<0.5	< 0.5	0.48	0.19
Mercury Dissolved by CVAF	0.01	0.01	0.2	0.2	2	mg,	kg <0.0005	< 0.0005	< 0.0005	< 0.0005			< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	0.001	0.002	< 0.0005	<0.0005
Phenol	1	-	-	-	-	mg,	kg <0.1	<0.1	N/A	<0.1	<0.1	N/A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A		<20	N/A	N/A	<0.1	<0.1
Fluoride	10	10	150	150	500	mg,	kg 20	7	N/A	12	9	N/A	7	6	2	8	3	9	3	5	2	5	N/A	N/A	3	4
Chloride	800	800	15000	15000	25000	mg,	kg 37	24	N/A	23	22	N/A	44	12	20	14	22	33	35	83	20	32	N/A	N/A	37	823
Sulphate	1000	1000	20000	20000	50000	mg,	kg 54	108	N/A	50	110	N/A	2302	42	4278	53	409	184	721	130	241	425	N/A	N/A	4668	335
Mass of raw test portion	-	-	-	-	-	k	N/A			N/A			N/A		N/A		N/A	N/A	N/A	N/A						N/A
Leachant Volume	-	-	-	-	-	1	N/A			N/A			N/A		N/A		N/A	N/A	N/A	N/A						N/A
Eluate Volume	-	-	-	-	-	1	N/A			N/A			N/A		N/A		N/A	N/A	N/A	N/A						N/A
Dissolved Organic Carbon	500	500	800	800	1000	mg,	kg 31	<20		20	21	N/A	30	<20	<20	<20	74	35	80	<20	27	<20	N/A	N/A	<20	<20
pH Total Dissolved Solids	- 4000	- 4000	- 60000	- 60000	- 100000	pH u mg,	nits 8.3 kg 1040	1140	N/A	8.35 980	980	N/A	7.99 4580	940	8.32 6460	1060	8.04 1200	8.32 1400	8.67 3060	N/A 1220	1260	1260	N/A	N/A	5900	8.67 2040
Asbestos Testing				<u> </u>				+																		
Asbestos Screen	-	-	-	-	-	No	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	N/A	NAD	NAD	N/A	N/A	NAD	NAD

NOTES:

NOTES: Categories explained in OCSC Waste Categories Table Hazardous classes subject to confirmation with waste facility Hazardous hotspot areas are isolated and may be reduced in size following further testing NAD = no asbestos detected

N/A = not analysed HWOL = HazWasteOnline

HazWasteOnline accessed through http://www.hazwasteonline.com. Application developed by One Touch Data Limited based on Regulation (EC) No. 1272/2008: the classification, labelling and packaging of substances and mixtures (CLP) and the latest UK Environment Agency guidance, WM3 v1.1 (2018). The EPA have stated that the HazWasteOnline tool is acceptable for the classification of wastes in Ireland and they have a licence for the application to review results if required.

While waste soil is classified based on the EU Council Decision 2003/33/EC, waste acceptance criteria may vary at each potential Waste Receiver site and further assessment and consultation may be required with the proposed Waste Receiver to confirm suitability for disposal. In terms of permitted sites, further assessment in terms of potential impact to the environment may be required or inert waste comprising made ground may not be acceptable.

Appendix A Buro Happold Report – 2008

023956 Connolly Station, Dublin

Geotechnical & Geoenvironmental Interpretative Report

October 2008

Revision 01

Revision	Description	Issued by	Date	Checked
00	Draft	SB	10/10/08	KL/HM
01	Final Issue	SB	16/10/08	KL/HM

O:\023956 - Connolly Station, Dublin (Transportation)\F09 - Geotech + SI\Reports\Interpretative Report\081010 SB 023956 Geotechnical & Geoenvironmental Interpretative Report 00rev1.doc This report has been prepared for the sole benefit, use and information of Coras lompair Eiram (CIE) for the purposes set out in the report or instructions commissioning it. The liability of Buro Happold Limited in respect of the information contained in the report will not extend to any third party.

Ja

author	Sarah Bear
signature	ABear
date	16 October 2008
approved	Kenny Lyons/Hugh Mallett
signature	the start
date	16 October 2008

Revision 01 October 2008 Page 2 of 30

Contents

Executive Summary

1 Introduction

1.1 Scope

- 1.2 Existing Information and Reporting
- 1.3 Limitations
- 2 Proposed Development
- 3 Site Description and Environmental Setting
 - 3.1 Site Location and Topography
 - 3.2 Current Site Use
 - 3.3 Previous Site Use
 - 3.4 Geology, Hydrogeology and Hydrology
- 4 Ground Investigation
 - 4.1 Site works
 - 4.2 Geotechnical sampling
 - 4.3 Getoechnical laboratory testing
 - 4.4 Geoenvironmental sampling
 - 4.5 Geoenvironmental laboratory testing
- 5 Ground Conditions
 - 5.1 Geology
 - 5.2 Made ground

	5.3	Alluvium/Estuarine Deposits	13		8.2.2	Groundwater
	5.4	Glacial Till	13	9	Ground	d Gas Assessment
	5.5	Limestone	13		9.1	Programme
	5.6	Visual/Olfactory Evidence of Contamination	13		9.2	Assessment
	5.7	Groundwater	14		9.3	Radon
6	Geoteo	chnical Assessment	15	10	Contar	ninated Land Risk Assessment
	6.1	Foundations	15		10.1	General approach
	6.2	Buoyancy	15		10.2	Conceptual Site Model
	6.3	Basement Retaining Walls	15		10.2.1	Potential Sources
	6.4	Dewatering during Construction	16		10.2.2	Proposed development – influer
	6.5	Railway arches	16		10.3	Potential Receptors and Pathwa
	6.6	Buried concrete	16		10.4	Risk Assessment
7	Soil Da	ata Assessment	17		10.4.1	Summary of risk assessment un
	7.1	Approach	17		10.4.2	Summary of risk assessment du
	7.2	Chronic risks to human health	17		10.4.3	Summary of risks on completion
	7.2.1	Made ground	17	11	Waste	Management
	7.2.2	Natural ground	18	12	Conclu	isions
	7.3	Acute Risks to Human Health	18		12.1	Ground conditions
	7.4	Risks to Flora	19		12.2	Controlled waters
	7.5	Risks to buildings/structures	19		12.3	Ground gas
8	Ground	dwater Assessment	20		12.4	Risk assessment
	8.1	Approach	20		12.5	Waste management
	8.2	Risks to Controlled Waters	20		12.6	Foundations
	8.2.1	Leachability	20		12.7	Buoyancy

10.4.3 Summary of risks on completion of the final development

10.2.2 Proposed development - influences on sources

10.4.1 Summary of risk assessment under current conditions

10.4.2 Summary of risk assessment during development.

Potential Receptors and Pathways

20
21
21
21
22
23
23
23
23
24
24
25
25
25
26
27
28
28
28
28
28
29
29
29

12.8	Basement Retaining Walls	29	
12.9	Dewatering	29	
12.10	Railway arches	29	
12.11	Buried concrete	29	
13 Reco	nmendations	30	
References			
Figures			
Appendix A: Generic Quantitative Risk Assessment			
Appendix B: Laboratory Analytical Results			
Appendix C: Waste Management			

Revision 01 October 2008 Page 5 of 30

Executive Summary

General

Coras lompair Éireann (CIE) is proposing to redevelop a 3.5ha site adjacent to Connolly Station in Dublin. On the instruction of CIE, Buro Happold has carried out a contaminated land Generic Quantitative Risk Assessment in accordance with current good practice guidance together with a geotechnical assessment as part of the overall master planning for the area. This report also presents an assessment of the waste classification of the likely arisings from proposed earthworks.

Background

The site is located adjacent to Connolly Station, Dublin at the approximate National Grid Reference E316 611 N234 866. The land has been built up above the surrounding area, sloping upwards from road level in the south-east to approximately 8m above this in the north-west and is currently occupied by the station carpark, along with various commercial/industrial buildings. The site has been previously occupied by various workshops, storage and goods sheds, sidings, railway lines, cattle pens and buildings until 1981 when the site had been fully developed into its current condition.

The current development proposal for the site consists of retail, residential and commercial properties together with community green space and a transport interchange. Existing railway arches are to be retained

Ground conditions

The geological sequence beneath the site consists of made ground (up to 7.2m thick) overlying a thin, discontinuous layer of estuarine deposits (sandy silt) overlying or inter-bedded with the upper Glacial Till (interlayered gravelly clay and gravel deposits). Limestone underlies the site at depth but was not encountered during the investigation.

Ground chemistry

Elevated concentrations of heavy metals (principally lead and arsenic) were recorded above relevant guideline values. Occasionally elevated concentrations of other metals (cadmium, mercury, nickel) and benzo(a)pyrene were recorded. The maximum recorded concentrations of arsenic, lead, nickel and mercury were very highly elevated in occasional samples. Asbestos not detected in any of the soil samples but is potentially present in the made ground. Locally strong hydrocarbon odours were recorded in soil (at water table level) and chemical analyses identified elevated concentrations of petroleum hydrocarbons (typical of highly degraded diesel).

Water quality

The groundwater table is fairly shallow beneath the site (approximately 2.5m below existing road level) and is likely to be in hydraulic continuity with the Docks located approximately 90m south of the site. Groundwater flow appears to be reasonably flat across the site.

Heavy metal concentrations are not highly elevated in groundwater, but elevated concentrations of petroleum hydrocarbons and polyaromatic hydrocarbons were recorded in groundwater within southern and eastern portion of site. Chloride, sulphate and ammoniacal nitrogen concentrations are also relatively elevated.

Ground gas

A limited ground gas monitoring programme was undertaken which recorded elevated concentrations of methane (>5%) and carbon dioxide (>10%) but at low flow rates (<1l/hr) indicating that the suite would fall into "Characteristic Situation 2" (as defined in good practice guidance).

Risk assessment

The generic quantitative risk assessment carried out on the basis of both existing and recently acquired data indicates that there are potentially significant risks to people and the environment under the currently existing conditions.

The proposed development of the site will give rise to some temporary risks, most notably to construction workers during its development. Short-term risks to the groundwater and the Docks are likely to increase during the excavation works. This is primarily because of the potential for runoff and leaching from stockpiles, and enhanced mobilisation of contaminants in groundwater. These potential risks can be mitigated by appropriate environmental management during construction. In the long term, provided appropriate mitigation measures are constructed and the recommendations below adopted, the risks to people and the environment can all be mitigated to acceptably low levels.

Risks to the groundwater are considered to be partially mitigated by the proposed development, which will consist of the excavation of the majority of made ground and contaminated soil material. It is therefore considered likely that with this reduction in the residual source, natural attenuation processes will be occurring at rates sufficient to be protective of human health and controlled waters. Some long term monitoring may be required to demonstrate satisfactory risk reduction is occurring by such processes.

Waste management

The results of the waste assessment indicate that the majority of the soils should be considered acceptable at the KTK Landfill site. Provision should however be made for the off-shore disposal of some hazardous waste

Revision 01 October 2008 Page 6 of 30 from the site based on visual/olfactory evidence of hydrocarbon contamination in the southern and eastern portion of the site, along with occasional exceedances of TPH and PAH for both Murphy and KTK waste acceptance criteria. It should be noted that it is the excavation contractor's responsibility, in association with the operator/owner of the receiving landfill site, to classify the materials for disposal/reuse prior to disposal.

Foundations and Sub Structure

Low rise structures (up to two storeys in height) could be supported by shallow foundations in the glacial till beneath basement slab level. For medium rise structures (up to ten storeys in height) the structure could be supported by a raft foundation. Structures greater than ten storeys in height could be supported by bored pile foundations. As the basement substructure is below ground water level, the basement and buildings will require appropriate design to resist uplift. Retaining walls will be necessary to support the basement around the site. Construction of a secant wall is proposed to form the basement. In order to maintain stability of the basement and excavation, and to provide dry working conditions for construction of the sub structure, a temporary pumped dewatering system will need to be installed to lower the ground water table. It is recommended that intrusive coring is carried out to determine the arch construction to allow a structural assessment of the arch to be made. All foundations are to be designed for an ACEC classification AC-5.

Recommendations

It is recommended that the following measures are implemented to mitigate the potential risks related to the proposed development;

- A rigorous health & safety regime (including PPE and personal hygiene) should be implemented by the construction work force;
- Construction workers should remain vigilant of ground conditions at all times and should report any suspect areas of potential contamination (especially hydrocarbon contamination);
- Stockpiling of grossly contaminated soils should be avoided if possible and where necessary, stockpiles should be covered when not in use.
- Gas protection measures (appropriate for Characteristic Situation 2) should be incorporated into all new buildings where excavation of all made ground has not been undertaken;
- Further investigation and monitoring of the groundwater regime should be carried out during and post construction in order to provide evidence of natural attenuation of hydrocarbon contamination;
- All foundations are to be designed for an ACEC classification AC-5.

- Further liaison with Dublin City Council as to disposal options for water during temporary works;
- Further intrusive investigation to determine stability of the existing railway arches;
- Pump testing to determine site specific hydraulic conductivities for dewatering works design.

1 Introduction

Coras lompair Éireann (CIE) is proposing to redevelop a 3.5ha site adjacent to Connolly Station in Dublin. On the instruction of CIE, Buro Happold has carried out a contaminated land Generic Quantitative Risk Assessment (GQRA) and geotechnical assessment as part of the overall master planning for the area.

1.1 Scope

This report presents a summary of the current ground investigation information and makes recommendations based on both geotechnical and geoenvironmental findings. It also presents an assessment of the likely waste classification of arisings from the proposed excavation works. This report has been prepared in general accordance with CLR11 – 'Model Procedures for the Management of Land Contamination', Environment Agency (UK), September 2004 (ref 1). The Irish Environmental Protection Agency (IEPA) and Dublin City Council have generally adopted the UK Model Procedures as good practice guidance appropriate for Ireland.

The objectives of this report are:

- To assess the potential for significant risks to both human and environmental receptors from contaminants identified within the made and natural ground during construction and for the finished site development;
- To identify key areas of geotechnical risk with respect to ground conditions;
- To determine the likely waste classes for excavated material; and
- To determine the need for and scope of any remediation.

1.2 Existing Information and Reporting

The following should be read in conjunction with this report:

Buro Happold Ground Engineering 'Site Appraisal Report' Connolly Station, Dublin job: 023956, March 2008.

1.3 Limitations

The ground investigations carried out to date have been undertaken in general accordance with good practice guidance, relevant standards and established good practice. The scope and design of the site investigation has been based upon the known history of site use, the results of previous studies and investigations and on the development plan. On this basis the spacing of the exploratory holes and the sampling and analysis plan for this investigation is considered to have provided a reasonable level of certainty about the ground conditions.

However it is important to recognise that contamination can be both widespread and relatively localised, depending upon its source and nature etc. No investigation, however comprehensive can be expected to determine absolutely the nature and extent of all the contamination which could be present on any site. There will always be an element of uncertainty about the ground conditions including contamination. This potential for currently undetected contamination to be present must therefore be taken into account in consideration of future development activities, in the risk assessment, in the design of the remedial strategy, the health and safety planning, the financial planning and financial risk management and in the implementation of the below ground works during construction.

2 Proposed Development

The proposed redevelopment of Connolly Station is to include retail, residential and commercial properties together with community green space and a transport interchange. Existing railway arches are to be retained

There are currently 9 blocks proposed as part of the development varying in height from 2 to 27 storeys.

A single storey basement is to be provided throughout most of the site footprint with basements used for car parking, plant and equipment. Along Sheriff Street the basement a two storey basement is proposed. No basements are proposed beneath heritage structures.

Revision 01 October 2008 Page 9 of 30

Site Description and Environmental Setting 3

A detailed review of the environmental setting for the site is provided in the Site Appraisal Report (Buro Happold, March 2008). A summary of this information (updated with reference to recently acquired site investigation data) is presented in the following sections.

Site Location and Topography 3.1

The site is located adjacent to Connolly Station, Dublin at the approximate National Grid Reference E316 611 N234 866 (Figure 1). It is irregular in shape covering an area of approximately 3.5 hectares. The site has been built up above the surrounding area, sloping upwards from road level in the south-east to approximately 8m above this in the north-west. The site is bounded to the south by Sheriff Street Lower, to the south-east by Oriel Street Upper, to the north-east by Seville Place and to the north-west and west by Connolly Station and associated platforms and railway lines (Figure 2). The entire site is covered mainly in hardstanding, incorporating a mixture of tarmac and concrete with a gravel cover surrounding the railway lines. The site is surrounded by a mixture of commercial/industrial and residential land use.

Current Site Use 3.2

At present, the site is occupied by Connolly Station, a rolling stock maintenance yard, various CIE Group buildings, IE building maintenance and fastrack facilities, CTC buildings and associated car parking. Disused, derelict railway arches (former goods sheds) run along Sheriff Street Lower, Seville Place and beneath Connolly Station and associated railway lines off Amiens Street.

Numerous heating oil tanks are present across the site, along with an electricity substation in the south-west corner. Activities undertaken within the locomotives maintenance building and yard to the north of the site include re-fuelling, cleaning and light servicing.

3.3 Previous Site Use

The majority of the site was open/agricultural land prior to 1838, with Connolly Station (then the Drogheda Railway Terminus) built by 1847. Various workshops, storage and goods sheds, sidings, railway lines, cattle pens and buildings occupied the site until 1981 when the site was fully developed into its current condition.

The majority of the area surrounding the site was covered by commercial and residential land uses from at least 1838. Significant surrounding historical land uses include gasometers (east of Oriel Street Upper), timber yards, tobacco, whiskey, sugar and tea stores, tobacco works, a tank, tobacco warehouse, storehouses and coal vards.

3.4 Geology, Hydrogeology and Hydrology

The geological sequence for the site, as obtained from the Geological Survey of Ireland (GSI) website (ref. 2) Geology of Dublin, Sheet 16, 1992, comprises Alluvium overlying Glacial Till (boulder clay) and Dublin Limestone (Calp). Much of the site, generally from the main car park area towards Connolly Station, is built up (up to 8m) above the surrounding ground level. It is therefore expected that a large thickness of made ground is present across this part of the site, potentially sourced from cuttings and workings during the construction of the station in the early 1840s.

Taking into account the geological map from the GSI website (ref. 4), GSI borehole records and ground observations made during the site walkover (refer Buro Happold Site Appraisal Report), the expected geology underlying the site can be summarised as indicated in Table 3.1 below.

Table 3.1. Summary of Geology and Hydrogeology

Name	Description	Thickness	Aquifer type
Made ground	Fill material, possibly reworked alluvium	Approx. 5-8m	Not classified
	and glacial till materials containing		(perched water
	demolition and railway materials.		likely)
Glacial Till	Sand, gravel, cobbles and boulders.	Approx. 12m	Unclassified
			aquifer
	Firm to stiff grey brown gravelly sandy	Typically 10-15m	Not classified
	CLAY containing limestone boulders.	from previous BH	(aquitard)
	Becoming dark grey / black and very stiff	investigations	
	with depth. Contains frequent lenses or		
	layers of fluvio-glacial sands and gravels.		
Calp	Dublin Limestone	Unproven	Locally Important
			Aquifer (LI)

Note: updated with reference to recently acquired site investigation data.

The hydrogeological system for the site and surrounding areas comprises possible perched water in the made ground, with groundwater residing within the granular glacial till deposits (sand and gravel) and the Limestone.

Groundwater present within the glacial till can be important for local supplies and is likely to supply the base flow to nearby surface waters. The direction of groundwater flow is likely to be southerly, towards the Docks

and the River Liffey. The layer of low permeability glacial till (gravelly clay) is likely to act as an aquitard, limiting vertical migration and effectively confining the Limestone aquifer from the granular glacial till deposits.

The Limestone Aquifer has been designated as a Locally Important Aquifer (LI) and is therefore likely to be important for local supplies. The site does not lie within a Source Protection Zone (SPZ), however it does lie within a drinking water protected area (DWPA) for groundwater. The IEPA currently do not require licences for groundwater abstraction.

The nearest surface water feature is the Docks located approximately 90m south of the site. The Docks connect with the Liffey Estuary and River approximately 440m south of the site. The Liffey Estuary has been designated as a nutrient sensitive area.

Revision 01 October 2008 Page 11 of 30

Ground Investigation 4

Site works 4.1

The ground investigation was undertaken by Glovers on behalf of Buro Happold and contamination testing was undertaken by Alcontrol Geochem, Dublin, a specialist analytical soils and groundwater laboratory. The site works took place between 8 July and 17 September 2008 and comprised the following:

- Drilling of 7 No. boreholes using cable percussion tool techniques (between 6.7 and 15.8m depth);
- Progression of 3 No. boreholes (following on from cable percussion) using rotary coring techniques (between 39.5 and 42.3m depth);
- Progression of 12 No. window sample boreholes (up to 5.0m depth);
- Installation of groundwater and gas monitoring standpipes in 14 No. boreholes
- Excavation of 4 No. structural inspection pits;
- Soil logging and sampling from all exploratory holes for geotechnical and geoenvironmental purposes;
- Geophysical trial survey above and within railway arches; and
- Groundwater and ground gas monitoring and sampling. •

The locations of the exploratory holes are shown as Figure 2. Logging and soil sampling was undertaken by a Glovers engineer. The ground conditions encountered in all exploratory holes were logged in accordance with BS 5930:1999. Logs for the boreholes, window samples and structural inspection pits are provided in the Glovers Factual Report September 2008.

4.2 Geotechnical sampling

Standard penetration tests (SPT) were conducted as per BS5950 in all boreholes, with disturbed (bag) samples collected at 1m intervals.

Getoechnical laboratory testing 4.3

Geotechnical laboratory testing was scheduled by Buro Happold. Results of the geotechnical testing are included in the Glovers factual report.

The geotechnical testing schedule for soils comprised the following testing:

Atterberg limits determination (liquid limit, plastic limit and plasticity index)

- Particle size distribution •
- Chemical testing to determine total sulfate, soluble sulfate, total sulfur, and pH in accordance with BRE SD1 (ref 2)

4.4 Geoenvironmental sampling

Representative disturbed soil samples were obtained from boreholes and window samples (in plastic liners) for examination and laboratory chemical analysis. An average of four samples were collected per location. At least one of the samples was taken within the top 1.0 m of the borehole. Further samples were taken where a change in lithology was noted or where significant visual/olfactory evidence of contamination was identified.

4.5 Geoenvironmental laboratory testing

Geoenvironmental laboratory testing was scheduled by Buro Happold. All contamination analysis was undertaken by ALcontrol Geochem. Details of the specific suites of analysis for soil samples can be found in this document. Analysis was undertaken using methods approved under the MCERTS performance standard for soils where possible. The number of samples analysed for each of the analytical suites is given in Table 4-1.

The analytical data is presented in Appendix B and discussed in Sections 7 and 8.

Table 4-1 – Number of samples analysed; Suites of analysis

Suite	Soil	Groundwater
General Suite	35	25
Heavy metals only	2	-
TPHCWG	13	-
VOC	3	-
SVOC	6	-
Leachate	9	-
Murphy/KTK	9	-

5 Ground Conditions

5.1 Geology

The ground investigation generally confirmed the geological sequence described in the published geology, however a thin layer of estuarine deposits (sandy silt) was recorded overlying or inter-bedded with the upper Glacial Till. Limestone was not encountered during the investigation.

The ground profile disclosed by the investigation is summarised in the Table 6.1 below, and is illustrated in the geological sections presented in Figure 3.

Table 6.1. Summary of site specific ground conditions

Stratum	Depth to top	Level of top	Thickness	General description
	of stratum	of stratum	(m)	
	(mbgl)	(m OD)		
Made ground	GL	+1.67.9	0.1-7.2	Mixture of clay, sand
				and gravel containing
				cobbles and
				occasional boulders
Estuarine Deposits	2.4-6.9	+47.4	0.5-3.2	Grey, locally gravelly
				sandy silt with sea
				shells.
Glacial Till	0.1-7.2	+1.77.2	Not proven	Firm dark grey sandy
			likely to be	gravel inter-bedded
			40m	with layers of firm
				gravelly clay.
Calp (Limestone)	>42.5	> -38.24	Not proven	-

5.2 Made ground

Made ground across the entire site ranged from 0.1 to 7.2m thick. Much of the site, generally from the main car park area towards Connolly Station, is built up (up to 8m) above the surrounding ground level. A large thickness

of made ground is therefore present across this part of the site, recorded thicknesses ranging from 3 to 7.2m. The thickness of made ground at road level was approximately 2.6m.

Made ground was recorded as a mixture of clay, sand and gravel containing cobbles and occasional small boulders along with pieces of glass, brick, sea shells, ceramics, timber, rubber, concrete, ash and pottery. Gravel is sub-angular to sub-rounded, fine to coarse.

Standard penetration tests (SPT) N values ranged between 3 and 24 in made ground, generally being higher in the gravel stratum, recording less than 12 in the sand and clay.

5.3 Estuarine Deposits

Estuarine deposits were encountered in borehole BH06 and window samples WS05, WS06 and WS11 in the south of the site and in WS12 in the far north. The deposits comprise grey, locally gravelly, sandy silt with sea shells. Sand is fine to coarse grained and gravel sub-rounded, fine to medium. No SPTs were taken within the Estuarine Deposits.

A layer of dark grey/black sandy silt with fibres and an organic odour (up to 1.9m thick) was recorded beneath made ground in window sample WS03 and borehole BH02.

5.4 Glacial Till

Glacial Till was encountered across the entire site, comprising dense dark grey sandy gravel interbedded with frequent layers of firm to stiff brown/dark grey sandy gravelly clay with cobbles. Gravel is sub-angular to sub-rounded, fine to coarse.

The thickness of Glacial Till was not proven, recorded down to at least 42.3m below ground level (-36.24mOD). Layers of gravelly clay within the Glacial Till ranged between 0.6 to 7m thick. SPT N values ranged from 12 to 48 within the boulder clay with the higher N-values likely to be attributed to the presence of cobbles and boulders within this stratum or an underlying gravel layer.

The gravel deposits ranged in thickness from 1.7 to 17m, with SPTs ranging from 22 to 68. with SPT's generally increasing with depth.

5.5 Limestone

Limestone was not encountered during the investigation.

5.6 Visual/Olfactory Evidence of Contamination

Hydrocarbon odours were recorded within the Estuarine Deposits in window sample WS11 at approximately 2.0m below ground level (bgl). No odour was recorded in the underlying gravelly clay (Glacial Till). No visual/olfactory evidence was recorded at any of the other exploratory hole locations.

Revision 01 October 2008 Page 13 of 30

5.7 Groundwater

Groundwater levels were measured on seven occasions during the recent investigation by Glovers (refer Glovers Factual Report September 2008) and on four occasions during the post ground investigation (GI) monitoring undertaken by ALcontrol Dublin. From observations made in the field and the monitoring data, it appears that the groundwater table is located within the gravel layers of the Glacial Till at approximately 2.5m below existing road level (0 OD Marlin Head). From monitoring data collected to date, groundwater flow is relatively flat across the site (refer Figure 3).

Falling head tests were carried out by Glovers in three boreholes (BH01, BH02 and BH03) during the field works. The permeability of the gravel layers ranged from 2.3×10^{-5} - 1.1×10^{-6} m/s while the boulder clay recorded a permeability of 4.0×10^{-6} m/s.

Revision 01 October 2008 Page 14 of 30

6 Geotechnical Assessment

6.1 Foundations

General

The proposed development involves the construction of 9 structures varying in height form 2 to 27 storeys. A single level basement is proposed over most of the site foot print. For the foundation assessment it has been assumed that made ground has been removed as part of the basement works with formation level within the natural soils beneath the site.

Shallow Foundations

Low rise structures up to say 2 storeys in height could be supported by shallow foundations in the natural glacial sands and gravels beneath basement slab level. An allowable bearing capacity of 150KPa can be adopted for preliminary design.

Raft Foundations

For medium rise structures up to say 10 storeys in height, the structure could be supported by a raft foundation at basement level founded within the natural glacial sands and gravels. Raft thicknesses varying from 600mm to 1000mm are likely to be required to evenly distribute column loads through the raft.

Pile Foundations

For structures greater than 10 storeys in height, the structure can be supported by pile foundations. Due to the nature of the ground and location of existing structures, a bored replacement pile is considered to be a suitable piling method for the development.

Assuming piles carry load in shaft friction, the following pile diameters and lengths may be adopted for preliminary design.

Bored Pile Diameter	Length	Safe Working Load
600mm	20m	1500KN
750mm	20m	1800KN
900mm	20m	2200KN

6.2 Buoyancy

As the basement substructure is below ground water level, the basement and buildings will require to be designed to resist uplift. For a single level basement 5m below ground level, assuming water is at or near existing ground level, an uplift pressure of 50kPa can develop beneath the basement slab. Assuming a minimum factor of safety against uplift of 1.4ln accordance with BS8110, a downward load of 70kPa will be required to provide an adequate factor of safety against uplift.

The uplift can be resisted by providing bar anchors or micro piles in the basement slab. Preliminary calculations indicate 12m long, 300mm diameter micro piles installed in 3m grid could provide the required resistance against uplift. The micro piles will require to be reinforced over the full length with approximately 2% reinforcement by pile area

To control uplift pressures an under drainage system with pumping could be adopted as part of the permanent works Due to the maintenance requirements and likely licensing issues for discharging water, this option has not been considered further.

6.3 Basement Retaining Walls

Retaining walls will be required to support the basement around the site. Retained heights vary from 12m adjacent to the existing railway sidings at Connolly to station to 4m. To maximise space within the basement and provide an open working area for construction it is proposed to construct embedded retaining walls to form the basement. To control water seepage into the basement and limit noise and vibration during construction, it is recommended that a secant piled wall system is adopted for the basement works.

Preliminary calculations indicate that a 900mm diameter secant wall up to15m long will be required to support the 4m deep single level basement excavation. For the 12m high retaining wall supporting the existing railway, a 1500mm diameter secant wall tied back with 3 rows anchors will be required to support the excavation and limit movements of the adjacent railway infrastructure.

Revision 01 October 2008 Page 15 of 30

Dewatering during Construction 6.4

In order to maintain stability of the basement excavation and provide dry working conditions for construction of the sub structure, a pumped dewatering system will require to be installed to lower the ground water table

There are various methods available for lowering the ground water table. The choice of method depends on the nature and permeability of the ground, the extent of the area to be dewatered and required reduction in ground water level.. Based on these factors it is considered that a well point system could be adopted to control groundwater during construction.

Wellpointing systems are among the most common methods of dewatering excavations and consist of shallow wells comprising small well screens of about 50mm diameter by about 0.5m to 1.0m long. The well screens are connected to a common header pipe where water is pumped to a discharge point. The design of the temporary dewatering system will be the responsibility of the contractor.

6.5 **Railway arches**

A trial geophysical survey was carried out on 3 and 5 July above the railway arches along Sheriff Street Lower to determine the presence and plan extent of hollow arches. The results from these surveys are presented in Appendix H of Glovers Factual Report (September 2008).

The results were not conclusive and the construction of the arches could not be determined. It is recommended that intrusive coring is carried out to determine the arch construction to allow a structural assessment of the arch to be made.

Four inspection pits were excavated adjacent to the existing arches to determine the geometry of the arch foundations. The trial pits are detailed in Appendix G of the contractors report. The results indicate the arches are founded on shallow brick or masonry foundations. The base of the foundations could not be proved during the ground investigation however probing at the base of each trial pit indicates the foundations to be at depths greater than 1.45m below ground level.

6.6 **Buried concrete**

Classification of buried concrete against sulphate attack has been carried out through the assessment of chemical test results on various strata and various levels to the current guidance BRE SD1:2005 (ref 2). In summary the soils and groundwater results for made ground give a design sulphate class of DS-4 and DS-5 respectively. The soils and groundwater results for Glacial till also give a design sulphate class of DS-4 and DS-5 respectively.

The DS-Class converts into a classification of the aggressive chemical environment for concrete (ACEC) once the pH and mobility of groundwater are taken into consideration. The characteristic pH value for both soil and groundwater has been taken as 7.1 for both made ground and for Glacial Till. For all foundations an ACEC classification of AC-5 has been determined assuming groundwater is mobile.

7 Soil Data Assessment

7.1 Approach

The current land use of the Connolly Station site is commercial/industrial, and is likely to remain so in the future development with possible residential land use (without plant uptake). An assessment of soil contaminant concentrations in relation to the future (more conservative) condition will be carried out to assess potential risks to both current and future human receptors using the site. Due to existing topography, site redevelopment will require a significant programme of earthworks to excavate the majority of the site to approximately two stories below the existing road level. An assessment of soil contaminant concentrations in relation to the enabling works/construction phase condition will be carried out to assess potential risks to human receptors using the site, principally construction workers.

The IEPA have generally adopted the UK assessment of risk as good practice guidance appropriate for Ireland. This approach has therefore been adopted for this report. Recently (August 2008) the Environment Agency published its revised contaminated land exposure assessment technical guidance (commonly known as "CLEA") and associated CLEA software model. The new CLEA software [Version 1.03 (beta)] has been published for a three month evaluation period for comment (period ends at the end of November). Currently, work is underway to generate screening values using this new software. In the meantime, Buro Happold is continuing to use the published SGVs (ref. 3 & 4) as initial screening criteria. However, the subsequent risk assessment has recognised the current uncertainty with respect to these values.

Human health threshold values (Generic Assessment Criteria) for cyanide, benzene, xylene, naphthalene, benzo(a)pyrene and total petroleum hydrocarbon (TPH) bands in accordance with Science Report P5-080/TR3 (ref 5) have been derived using the CLEA UK (beta version) risk assessment model. Generic Assessment Criteria (GAC) for benzo(a)pyrene and naphthalene were derived using toxicological data from the TOX reports published by the Environment Agency. For TPH bands given in aliphatic and aromatic bands, toxicological values reported in the EA publication "The UK approach for evaluating human health risks from petroleum hydrocarbons in soils" have been adopted. Potentially phytotoxic metals have been assessed against Dutch Values (ref. 6) (for ecotoxic risk) in the absence of suitable generic assessment criteria.

Statistical analysis of the soil analytical results has been carried out in general accordance with the 'Guidance on Comparing Soil Contaminant Data with Critical Concentrations' (ref 7). An estimate of the true population mean has been calculated (upper confidence limit of the sample mean) for all contaminants where a sample has exceeded relevant screening criteria. The "conservative mean" contaminant concentration (US95) is then compared against the screening criteria. This approach is intended to assess the average exposure to a

contaminant rather than looking at solely worst case values. Outlier testing has been carried out to indicate whether or not a data point is likely to form part of the same statistical distribution. Where a maximum concentration has been determined as an outlier (confirmed by visual/olfactory evidence or the result of an error) this concentration has not been included in the US95 calculation, but has been separately assessed.

Division relevant to receptor

The analytical data has been assessed with respect to:

- Chronic risks to human health;
- Acute risks to human health;
- Risks to flora;
- Risks to buildings/ structures; and
- Risks to controlled waters (considered in Section 8).

Division relevant to source material

The analytical data has been characterised with respect to the two different soil types encountered; (i) made ground and (ii) natural materials (including Estuarine Deposits and Glacial Till).

7.2 Chronic risks to human health

7.2.1 Made ground

A total of twenty eight samples of made ground were analysed for a suite of inorganic and organic determinands given in Table 1 of Appendix B. Determinands showing one or more exceedance of a relevant threshold value have been subjected to statistical analysis as defined above. This data is summarised in Table 7.1 below.
Determinand	No of samples	SGV (No. of sam SGV/0 Residential without plant uptake	ples exceeding GAC) Commercial industrial	Max	Min	US95 (exc. Outlier)	Outliers
Arsenic (mg/kg)	26	20 (15)	500 (0)	150	3	41	-
Cadmium (mg/kg)	26	30 (2)	1400(0)	41	<1	3	-
Lead (mg/kg)	26	450 (15)	750 (9)	2263	30	980	-
Mercury (mg/kg)	26	15 (3)	480 (0)	320	<1	6	-
Nickel (mg/kg)	26	75 (2)	5000 (0)	173	11	62	-
Benzo(a)pyrene (mg/kg)	26	1.4* (4)	31* (0)	7.2	<0.001	2.09	-

Table 7.1 Made ground- Determinands showing exceedances of thresholds

*Generic Assessment Criteria

The majority (54%) of samples of made ground recorded concentrations of arsenic above the SGV for residential without plant uptake. The US95 for arsenic was also above the SGV for residential without plant uptake by a factor of two. One third of samples recorded concentrations of lead above the commercial/industrial SGV for lead, with 58% of samples elevated above the SGV for residential without plant uptake. The US95 for lead was also elevated above the SGV for both residential and commercial/industrial landuse.

A small proportion of samples recorded concentrations of cadmium, mercury, nickel and benzo(a)pyrene above the SGV for residential without plant uptake. The US95 for all of these determinands, with the exception of benzo(a)pyrene (which exceeded the SGV by 50%), was however below the SGV for residential without plant uptake.

Slightly elevated concentrations of TPH (up to 389mg/kg) were recorded in occasional samples of made ground. TPH results depict predominantly 'heavy end' aromatic hydrocarbons, however occasional aliphatic hydrocarbons were also recorded. The majority of VOC and SVOC were recorded below limits of detection although occasional concentrations above detection limits were recorded.

7.2.2 Natural ground

A total of nine samples of natural materials were analysed for a suite of inorganic and organic determinands. With one exception, all samples recorded concentrations of all determinands below relevant screening values.

A single sample of natural material showed a slight exceedance of the residential without plant uptake SGV for benzo(a)pyrene (WS3 at 4.0m). The sample size (six) for benzo(a)pyrene was considered to be too small to calculate the US95.

Strong hydrocarbon odours were recorded in natural soil at the approximate water table level within WS11 (located within the building maintenance yard). Samples collected from WS11 recorded elevated TPH concentrations (up to 635mg/kg) with higher concentrations within the heavier carbon banded range. Laboratory characterisation suggests this concentration is typical of highly degraded diesel. TPH concentrations within this location reduced considerably with depth as expected due to the relatively shallow water table level (approximately 2m bgl). That is, this contamination appears to be representative of 'smear' at or about the zone of groundwater fluctuation.

7.3 Acute Risks to Human Health

Soil concentrations

There are no guidance values for assessing acute risk related to soil contamination. Because such risks are associated with short term exposure, consideration of maximum concentrations (and not the "average" concentration which is relevant to chronic, or long term risk) is required. Comparison of these maximum concentrations has been made with the various SGVs and other screening values which will provide a conservative benchmark for such short term risks (as the SGVs etc are based upon a long term exposure).

The maximum values recorded for some inorganic determinands are highly elevated. With the exception of lead, these maximum concentrations have been recorded in two single samples located in the northern corner of the site in the vicinity of the CTC building. The maximum recorded concentration of arsenic was approximately 7.5 times the SGV for residential without plant uptake, the maximum recorded concentration of mercury was 21 times the SGV and nickel was 2 times the SGV. The maximum recorded concentration of lead was 3 times the SGV for commercial/industrial land use and 5 times the SGV for residential landuse (without plant uptake).

Revision 01 October 2008 Page 18 of 30

Asbestos

Asbestos screening was undertaken on twenty six samples of made ground and nine samples of natural material. Asbestos fibres were not recorded in any of the samples analysed.

7.4 Risks to Flora

Phytotoxic effects with respect to *flora* have been assessed by statistical evaluation of the datasets of the phytotoxic elements copper and zinc. Results are summarised in Table 7.2.

Table 7.2 –	Phytotoxicity	assessment
-------------	---------------	------------

Material	Determinand	No of samples	Dutch Intervention Value (DIV)	Max	Min	US95 (exc. Outliers)	Outliers
Made ground	Copper (mg/kg)	28	190 (10)	1179	7	258	-
	Zinc (mg/kg)	28	720 (2)	1124	59	306	-

Over one third of the samples of made ground recorded elevated concentrations of copper above relevant thresholds. Elevated concentrations of zinc were recorded in less than 10% of samples. The US95 for copper was above the DIV, but the US95 for zinc was below.

Copper and zinc concentrations were below the relevant thresholds in natural ground.

7.5 Risks to buildings/structures

Classification of buried concrete against sulphate attack has been carried out through the assessment of chemical test results on various strata and various levels to the current guidance BRE SD1:2005 (ref 2). In summary the soils and groundwater results for made ground give a design sulphate class of DS-4 and DS-5 respectively. The soils and groundwater results for Glacial till also give a design sulphate class of DS-4 and DS-5 respectively.

The DS-Class converts into a classification of the aggressive chemical environment for concrete (ACEC) once the pH and mobility of groundwater are taken into consideration. The characteristic pH value for both soil and groundwater has been taken as 7.1 for both made ground and for Glacial Till. For all foundations an ACEC classification of AC-5 has been determined assuming groundwater is mobile. In order to assess the risks to conventional water pipe material from made ground found onsite, contaminant concentrations have been compared against threshold values derived by Water Regulations Advisory Scheme (WRAS) (ref 8). Where soil concentrations exceed these threshold values, it is likely that special consideration of material selection will be required.

Determinands showing one or more exceedance of a WRAS material selection threshold are summarised in Table 7.3. Numerous concentrations of arsenic, lead, sulphate and pH were elevated above WRAS material selection threshold values in made ground. Arsenic and lead are classed as a toxic contaminant, whereas sulphate and pH are corrosive. Occasional concentrations of cadmium, mercury, and organic contaminants (PAH) were also elevated above WRAS material selection threshold values.

Occasional concentrations of corrosive (pH), toxic (arsenic) and organic (TPH) contaminants were recorded concentrations above WRAS material selection threshold values in natural material.

With reference to Table 3 of WRAS Information and Guidance Note: No 9-04-03 (ref 8), suitable pipe materials for organic and corrosive environments include wrapped iron or polythene/aluminium/polythene. Suitable pipe materials for toxic contaminants include metallic or plastic. The WRAS Guidance Note however recommends that the laying of water pipes across land where arsenic is identified or suspected is unacceptable without site remediation.

8 Groundwater Assessment

8.1 Approach

For the groundwater assessment, contaminant concentrations have been compared with Irish Interim Guideline Values (ref 9). These values have been recommended by the Irish Environmental Protection Agency (IEPA) and are based upon a combination of both Drinking Water Standards (ref 10) as well as Freshwater Environmental Quality Standards derived under the requirements of the EC Dangerous Substances Directive (ref 11). It is recognised that these substances may require further review against site specific thresholds derived using quantitative risk assessment, if potentially significant risk is identified.

8.2 Risks to Controlled Waters

Potential risks to controlled waters have been assessed by examining soil leachability and groundwater data. A total of twenty one soil samples were scheduled for leachability testing. Groundwater was sampled from nine locations (BH01-BH07, WS7 and WS11) on two to three occasions between 29 August and 17 September 2008. Soil leachability and groundwater data are presented in Appendix B as Tables 2 and 3 respectively.

8.2.1 Leachability

The leachate from numerous soil samples recorded concentrations of copper and barium above Irish Interim Guideline Values (IIGV). Occasional concentrations of arsenic, chromium, nickel, fluoride and sulphate were also elevated above IIGV in leachate. Leachable metals (particularly arsenic and mercury) in samples where elevated soil concentrations were recorded were low in comparison.

8.2.2 Groundwater

8.2.2.1 Field observations

During groundwater sampling, hydrocarbon odours were recorded in water purged from WS11, BH03 and BH02 and a slight hydrocarbon odour was noted in purged water from BH06 and WS7. A slight hydrocarbon sheen was observed on water purged from WS11, BH02, BH06 and BH03. Foam was also observed on BH03. Purged groundwater from all boreholes, except from BH02, was high in suspended solids.

An interface probe was used to monitor groundwater levels as well as levels of light and dense non-aqueous phase liquids (LNAPL and DNAPL). No LNAPL or DNAPL was detected in any of the boreholes during the monitoring period.

Inorganics

Occasional concentrations of dissolved boron and lead were recorded above Irish Interim Guideline Values (IGV). Highly elevated concentrations of chromium, lead, nickel and zinc were recorded on one occasion in groundwater sampled from BH04. Concentrations of these metals were below IGV during the other two sampling rounds. Investigation undertaken by the laboratory (ALcontrol) indicated that there was a possibility that this sample was contaminated during analysis. Re-analysis for dissolved chromium confirmed sample contamination, reporting concentrations much lower than the initial results obtained. The metal concentrations from this sample have therefore not been included in this assessment.

Consistently elevated concentrations of chloride, sulphate, ammoniacal nitrogen, and total hardness were recorded above IGV. The pH recorded on one occasion in BH04 was elevated above the IGV (i.e. alkaline).

Organics

Total petroleum hydrocarbon (TPH) concentrations (up to 48.32mg/l) in groundwater sampled from BH02, BH03, BH05, WS7 and WS11 were consistently elevated above IGV. Occasional concentrations of TPH were recorded in groundwater sampled from BH04, BH06 and BH07. TPH concentrations were generally within the aromatic C_{12} - C_{35} hydrocarbon range. Occasional concentrations of TPH within the alliphatics C_{12} - C_{35} range were recorded in BH02 and BH03. The full range of hydrocarbons were recorded in groundwater sampled from WS11.

Consistently elevated concentrations of ethylbenzene and total xylenes were recorded above IGV in WS11. Occasionally elevated concentrations of benzene and toluene were also recorded above IGV at this location.

Consistently elevated concentrations of total PAH were recorded above IGV in groundwater sampled from BH02, BH03, BH06 and WS11. Occasionally elevated total PAH concentrations were recorded in groundwater sampled from BH04, BH05, BH06 and WS7. Occasional concentrations of fluoranthene, benzo(b) + benzo(k)fluroanthene, benzo(a)pyrene, indeno(123cd)pyrene and benzo(ghi)perylene were recorded in groundwater.

All organic determinands were recorded below IGVs in groundwater sampled from BH01. PCB concentrations were recorded below the laboratory detection limit in groundwater sampled from BH03 (within vicinity of electricity substation).

Revision 01 October 2008 Page 20 of 30

Ground Gas Assessment 9

9.1 Programme

Ground gas monitoring was undertaken at four locations in made ground, two locations within made ground and natural material (alluvial deposits and boulder clay) and one location in natural material (estuarine deposits and boulder clay) across the site. This monitoring programme comprised four visits at weekly intervals between 29 August and 17 September 2008. Visits were undertaken during periods of both high and low atmospheric pressure. Gas samples were collected on one occasion and analysed in the laboratory to confirm the readings recorded on site. Table 9.1 shows a summary of the results from the monitoring.

Table 9.1 Summary of ground gas monitoring

Strata	Flow Rate (l/hr)	VOCs (ppm)	CO2 (% of samples > 5%) % v/v	CH4 (% of samples > 5%) % v/v
Made ground	0-0.2	10-272	<0.1-6.4 (0.07)	<0.1-5.6 (0.07)
Made ground and natural deposits (alluvial deposits and glacial till)	0-0.2	32.9-388	2.6-10.6 (50%)	<0.1 (0)
Natural deposits (estuarine deposits and glacial till)	0.1-0.2	95-1980	3.8-9.3 (50%)	0.2-100 (50%)

Highly elevated concentrations of methane up to 100% v/v were recorded in natural deposits (WS11) and up to 9.4% v/v carbon dioxide (WS03). This elevated concentration of methane is likely to be associated with the hydrocarbon contamination recorded in soil and groundwater within WS11 (confirmed by chemical analysis of groundwater). The second highest methane concentration recorded (not associated with hydrocarbon

contamination) was 0.4% v/v (WS12). A photoionisation detector (PID) was used to provide a screen for Volatile Organic Compounds (VOCs) present in the soil gas during the monitoring period. VOC readings of up to 111ppm (WS11) were recorded.

Occasional concentrations of carbon monoxide and hydrogen sulphide were recorded throughout the monitoring period. Carbon monoxide concentrations ranged from <0.1-6ppm and hydrogen sulphide concentrations from <0.1ppm-1ppm.

Consistently low flow rates were observed, ranging from 0l/hr up to 0.2/hr. Flow rates also did not differ significantly between response zone stratum. Chemical analysis of ground gas compared to field measurements is shown in Table 9.2.

Table 9.2 Chemical analysis of ground gas compared to field results

			FIE	ELD RESUL	LAB RESULTS				
	Date Monitored & Sampled	Flow Rate (l/hr)	Atmos Pres (mb)	Min O2 (%) air	Max CO2 (% air)	Max CH4 (% air)	O2 (%) air	CO2 (% air)	CH4 (% air)
NS3	10/09/2008	0.1	999	7.8	10.6	<0.1	9	8	<0.05
WS10	10/09/2008	0	999	20.1	<0.1	<0.1	21	0.4	0.1
WS11	10/09/2008	0.2	1001	10	5.7	1.2	11	4.2	0.1

Oxygen and carbon dioxide concentrations recorded in the field were consistent with laboratory analysis, however methane concentrations recorded in the field (WS11) were slightly higher than those recorded in the laboratory. The GA2000 gas analyser is calibrated using certified methane mixtures and will give correct readings provided there are no other hydrocarbons present within the sample. If there are other hydrocarbons present, the methane reading will be higher (never lower) than the actual methane concentration being monitored. On this basis, and taking into consideration the significantly elevated levels of methane (up to 100%v/v) recorded in WS11 (which contains hydrocarbon impacted soil and groundwater), the elevated methane concentrations recorded in WS11 is likely to be due to elevated VOC vapours and not solely methane.

9.2 Assessment

The soil data has been assessed with reference to CIRIA report C665 (ref 12). Consideration has therefore been given to both methane and carbon dioxide concentrations as well as emission (flow) rates. The Gas Screening

Value (GSV) is defined as the product of gas concentration multiplied by flow rate. The GSV is then considered with other parameters/limiting conditions to define a Characteristic Situation. The Characteristic Situation in turn identifies the need for and scope of any necessary gas protection measures. Assessment of the ground gas results is provided in Appendix B – Table 4.

As part of the proposed development, most of the made ground across the site, and a significant volume of natural material (including that contaminated with hydrocarbons) will be excavated and removed offsite in order to facilitate development. Gas protection measures across this part of the site are therefore not required as the source will have been removed. In addition, the proposed below ground car-park is considered to provide adequate ventilation in this area. The railway arches along Sheriff Street Lower are however being retained and therefore the ground gas regime in this area (and for any buildings where no-excavation is proposed) has been assessed.

The highest concentration of methane (5.6% v/v) and the highest flow rate (0.2 l/hr) recorded within the arches along Sheriff Street Lower produce a GSV of 0.1 indicating that the ground gas regime beneath the site (under a worst case scenario) falls within Characteristic Situation 2 (Table 8.5, CIRIA Report C665). Taking into consideration the limited monitoring period, the likely maximum concentrations should further monitoring be carried out, recorded flow rates, and uncertainties in the data, gas protection measures typical of Characteristic Situation 2 are recommended within the former railway arches and any new buildings where no excavation is proposed.

Should the proposed development change elsewhere on the site, gas protection within any new buildings and services onsite needs to be seriously considered. Further ground gas monitoring and sampling should be undertaken to fully assess the ground gas regime across the site, and to verify the highly elevated methane levels recorded.

9.3 Radon

Technical Guidance document C published by the Department of the Environment (DoE) in support of the 1997 Building Regulations provides guidance on the radon protection measures required for new and existing buildings where extensions or material changes of use are planned. Box 9.1 below details the specific guidance with respect to radon protection measures required. Discussions with the National Radiological Protection Institute for Ireland (NRPI) indicate Dublin is not in a High Radon Area.

Gas protection measures typical of CS2 are considered to be sufficient to protect against the build up of radon iwithin the former railway arches and any new buildings where no basement car-park is proposed. Radon protection measures are not considered necessary within the proposed basement car-park, on the basis that

this should provide adequate ventilation to prevent the build up of radon, combined with the depth to the potential source of radon (>40m below ground level).

2.10 Dwellings or other long -stay residential buildings

(a) High Radon Areas: measures should be taken to protect the building from Radon in the ground. For example, in the case of a non-complex building of normal design and construction, a fully sealed membrane of low permeability over the entire footprint of the building and a potential means of extracting Radon from the substructure such as a standby Radon sump or sumps with connecting pipework or other appropriate certified systems should be provided.

(b) Areas other than High Radon Areas: the building should be provided with a potential means of extracting Radon from the substructure should that prove necessary after construction. For example in the case of a non-complex building of normal design and construction, the provision of a standby Radon sump or sumps with connecting pipework or other appropriate certified systems should be adequate.

2.11 Other Buildings

The designer should consider the provision of measures to protect buildings against high Radon concentrations. In the absence of specific guidance, provisions similar to those in 2.10 may be adopted.

Box 9.1 Guidance on radon protection measures, page 8, Technical Guidance Document C, DoE, 2002.

10 Contaminated Land Risk Assessment

10.1 General approach

The UK source-pathway-receptor approach to the assessment of risk from has been adopted for this report as this is considered good practice in Ireland. If one of these three elements is absent it is considered that there is no risk of harm. If, however, there is considered to be a linkage between any given source and any given target/receptor then a risk-based approach is used to assess the significance or impact of any such linkage.

Source – The contaminants that have the potential to negatively affect human health and/or the health of the environment (i.e. the hazard).

Pathway - The potential route by which a receptor may come into contact with the source.

Receptor – The specific group of human beings or aspect of the environment (e.g. controlled waters) that could be affected by the source.

Risks are defined as the probability of an event occurring combined with the severity of the consequence of that event occurring. Particularly, to assess the risk to site end users posed by any given source, the sensitivity of each receptor is considered. For example, the concentration of contamination acceptable at a site to be developed as a residential property with a garden used to grow vegetables and accessible to young children is set lower than that for a commercial site where soil is exposed in minor areas of landscaping and the only long-term users of the site are adults. Similarly, a site overlying a major aquifer supplying potable water to a large population will be considered more stringently than a site overlying an impermeable geology with only minor seepages of groundwater.

10.2 Conceptual Site Model

The potential risks posed to human health and the environment by ground contamination at this site have been evaluated using a generic quantitative risk assessment which incorporates the 'source-pathway-receptor' identification and assessment methodology in accordance with good practice guidance (ref 1). The risk assessment process therefore involves the identification of each site specific source based on both desk based and chemical information obtained from the site investigation together with identification of each relevant exposure pathway and each potential receptor. The potential risks to the receptor are then assessed by considering the potential effect of the source on the receptor as well as the likelihood of a pathway linking the two, i.e. a pollutant linkage as discussed above.

10.2.1 Potential Sources

Based on the desk based and site investigation data obtained to date, the potential sources of contamination that may reasonably affect receptors on the site are summarised in Table 10.1 below. Table 10.1: Principal sources of contamination in existing condition and during construction

Potential Source(s)	Location	Potential Contaminants of Concern/Comments
Made ground	Site wide	Clays, sands and gravels containing glass, brick, sea shells, ceramics, timber, rubber, concrete, ash and pottery in some locations.
		Arsenic (50% samples) recorded above residential without plant uptake. Lead (30% samples) recorded above commercial/industrial SGV. The US95 values for arsenic and lead > SGV.
		Occasional concentrations of other metals (Cd, Hg, Ni) and benzo(a)pyrene recorded > SGV for residential without plant uptake. US95 > SGV for benzo(a)pyrene only.
		Maximum recorded concentrations of As, Pb, Ni and Hg very highly elevated in occasional samples.
		Numerous concentrations of As, Pb, sulphate and pH > WRAS material selection threshold values.
		Asbestos not detected, but potentially present.
		Leachability: Metals are not highly leachable based on the analytical results.
		Ground Gas:
		Limited monitoring programme undertaken. Maximum concentrations of methane (5.6%v/v) and carbon dioxide (10.6%v/v) recorded. Consistently low flow rates (<0.2l/hr). Gas
		protection measures typical of Characteristic Situation 2 recommended within arches.

Revision 01 October 2008 Page 23 of 30

Potential Source(s)	Location	Potential Contaminants of Concern/Comments
Hydrocarbon contaminated soil	South of site	Strong hydrocarbon odours were recorded in soil at the approximate water table level within the building maintenance yard. Elevated TPH concentrations (up to 635mg/kg) recorded. Laboratory characterisation suggests this is typical of highly degraded diesel. Ground Gas: Limited monitoring programme. Maximum concentrations of methane (100%v/v) and carbon dioxide (9.3%v/v) recorded in the area. Consistently low flow rates (<0.2l/hr).
Residual hydrocarbon contaminated groundwater	South to east	Very high hydrocarbon odours and a slight sheen were recorded in groundwater during sampling. Consistently elevated concentrations of TPH (up to 48mg/l) and PAH (up to 25ug/l) in groundwater within southern and eastern portion of site. TPH concentrations recorded are predominantly within C ₁₂ -C ₃₅ range. BTEX compounds elevated in groundwater sampled from WS11.

10.2.2 Proposed development – influences on sources

The proposed development involves the excavation of the majority of made ground across the site, and a large proportion of natural soil as part of the construction of a two storey basement. The only area that will not be excavated is beneath the railway arches along Sheriff Street Lower. The sources of made ground and hydrocarbon contaminated soil will therefore be considerably reduced in the final development.

10.3 Potential Receptors and Pathways

Site specific pathway receptor linkages have been identified for the site (Table 10.2) with respect to the sources outlined above, and with respect to the anticipated future uses of the site as described in Section 4.3.

Table 10.2 – Site Specific Receptors & Pathways

Receptor		Pathway		
Human Health	Current site users (commercial/industrial)	Direct contact and dermal uptake, soil ingestion, gas and vapour inhalation (outdoor air)		
	Enabling works and construction phase workers.	Direct contact and dermal uptake, soil and dust ingestion including asbestos fibres, gas and vapour inhalation. Migration of ground gas <i>via</i> permeable strata and accumulation in enclosed spaces.		
	Site end users (commercial/industrial and residential)	Direct contact and dermal uptake, soil and dust ingestion including asbestos fibres, gas and vapour inhalation. Ingestion of contaminated water supplies. Migration of ground gas <i>via</i> permeable strata and accumulation in enclosed spaces.		
	Offsite users (local residents and commercial/industrial)	Soil and dust ingestion during enabling works/construction including asbestos fibres, gas and vapour inhalation, ingestion of contaminated water supplies. Migration of ground gas <i>via</i> permeable strata and accumulation in enclosed spaces.		
Controlled Waters	Docks	Leaching and migration via permeable strata. Surface runoff.		
	Gravel layers within Glacial Till Limestone	Leaching and migration <i>via</i> permeable strata.		
Flora		Direct contact and up-take via root system.		
Buildings/services	On site structures (including water supply pipes)	Direct contact/ permeation of plastic pipe work by contaminants in soil and leachate. Migration of ground gas <i>via</i> permeable strata and accumulation in enclosed spaces.		

10.4 Risk Assessment

The details of the Generic Quantitative Risk Assessment are presented in Appendix A – Table 1 (existing site condition), Table 2 (enabling works/construction phase condition), and Table 3 (proposed site condition) and the results/ conclusions discussed in Section 13.

It should be noted that this risk assessment has been completed without consideration of potential remedial measures however does assume use of standard site health and safety procedures and appropriate personal protective equipment (PPE) and site management practices (stockpile management, surface drainage etc). A summary of key details with respect to the existing, construction phase and proposed development conditions is provided below:

Existing condition: Car park and commercial uses [Appendix A - Table 1].

Enabling works/construction phase: Significant excavation to majority of site, de-watering and demolition of existing structures [Appendix A- Table 2]; and

<u>Proposed development:</u> Mixed use development including a two storey basement across majority of site, retail blocks, car parking and residential uses [Appendix A – Table 3].

10.4.1 Summary of risk assessment under current conditions

Risks to human health

The human receptors potentially at risk under current conditions are the people who visit/use the site (i.e. railway commuters and commercial users) together with residents of neighbouring properties. The potential risks to site users associated with ground gases are assessed as Moderate. This reflects the nature of the soil gas regime and the current absence of gas protection measures onsite. Risks to people off-site associated with ground gases are assessed as Low, taking into consideration the nature of the soil gas regime but also the level of the site above surrounding land and presence of retaining walls inhibiting ground gas migration.

The assessment of the potential risks to visitors/users of the site and adjacent site users associated with solid contamination (in both the made ground and natural materials) is assessed as Low, reflecting the recorded concentrations, limited period of exposure and limited presence of soft landscaping.

Risks to controlled waters

There are currently potential risks to groundwater related to the made ground, hydrocarbon contaminated soils and residual hydrocarbon contamination in groundwater. The risks to groundwater are range from Moderate/Low to Moderate reflecting the presence of contamination in the made ground and natural soils, the shallow depth to groundwater, the proven presence of contaminants in the groundwater and the designation of this receptor as drinking water protected area (relating to the Limestone Aquifer underlying the site at depth).

The risks to surface water (Docks) vary from Low to Moderate/Low. This reflects the discussion above regarding groundwater, but also the distance of the Docks to the site (approx 90m south) and lower sensitivity of this receptor.

10.4.2 Summary of risk assessment during development.

Risks to human health

During the development of the site, the human receptors potentially at risk are the construction workers and residents of neighbouring properties. It has been assumed that during development, the active part of the site will be secured by the contractor.

The potential risks to construction workers from soil contaminants in made ground and residual hydrocarbon contamination in groundwater are assessed as Moderate/Low. Potential risks related to ground gases are also assessed as Moderate/Low. This assessment reflects both the nature of the materials, ground gas regime and construction methods, the potential for direct contact, dust inhalation etc, but also the assumed use of standard health and safety procedures. All of these potential risks are capable of mitigation by means of an appropriately rigorous health and safety/hygiene regime.

The potential risks to adjacent site users are generally assessed as Low. However, there are potential risks greater than Low related to dust generation of made ground. These potential risks are capable of mitigation by the employment of an appropriate environmental management regime.

Risks to controlled waters.

During development there are potentially significant risks to both groundwater and the docks related to the excavated materials (made ground and contaminated natural material) and residual hydrocarbon contamination. The potential risks to groundwater are assessed as Moderate reflecting the presence of recorded contaminants in soil and groundwater, the possible temporary local increase in leachate migration due to excavations and groundwater abstraction during dewatering.

Risks to the Docks are assessed as Moderate/Low. This reflects the discussion above regarding groundwater, the potential for enhanced leaching of contaminants from stockpiles, the distance of the Docks to proposed earthworks (<90m), and the scale of the proposed earthworks.

Risks to controlled waters can be mitigated by the adoption of safe working practices such as pre-planned stockpile management; measures to control run off, leachate collection etc.

Revision 01 October 2008 Page 25 of 30

10.4.3 Summary of risks on completion of the final development

Risk to human health

In the final development, the majority of made ground and a large proportion of natural soil across the site will be excavated and removed offsite, with the construction of a two storey basement (to an approximate maximum depth of 10m below existing ground level). Material beneath the arches along Sherriff Street Lower will remain in-situ. The majority of the source of contamination across the site (made ground and hydrocarbon contaminated soil) will therefore have been removed. The potential risks to site users and occupiers of adjacent sites from ground gas migration and accumulation have therefore been assessed as Very Low.

The entire site will be covered in hardstanding in the final development. On this basis, there is no plausible exposure pathway and thus no risks to site users and occupiers of adjacent sites from contamination present in the remaining made ground or natural soil beneath the site.

Risks to controlled waters

As discussed above, in the final development the majority of made ground and a large proportion of natural soil across the site will be excavated and removed offsite. A small proportion of material will remain beneath the arches along Sherriff Street Lower. On this basis, the majority of the source of contamination across the site (made ground and hydrocarbon contaminated soil) will have been removed. Accordingly potential risks to groundwater in the long term, from residual hydrocarbon contamination will be partly mitigated by the proposed development (i.e due to the excavation of majority of contaminated made ground and soil). However, the potential risks to groundwater have been assessed as Moderate/Low reflecting the level of contamination and the sensitivity of this receptor (drinking water protected area).

It is considered likely that natural attenuation processes on the residual contamination will be occurring at rates sufficient to be protective of human health and controlled waters. Three lines of evidence would need to be used to support natural attenuation of hydrocarbon contamination including:

- Observed reduction in contaminant concentrations down-gradient of the source;
- Documented loss of contaminant mass using chemical and geochemical data (e.g. depletion of electron • acceptors and donors, and increasing metabolic by-products); and
- Microbiological laboratory data that support the occurrence of biodegradation.

At the minimum the first two lines of evidence must be obtained and ideally all three lines of evidence should be confirmed to demonstrate the occurrence of natural attenuation. It is recommended that a programme of

monitoring is carried out during and post construction to provide evidence to support the occurrence of natural attenuation.

11 Waste Management

The proposed development will require the off-site disposal of arisings from the site of approximately 67,000m³.

In order to determine the likely waste classes, soil and leachate test results require screening against Waste Acceptance Criteria that have been derived by Irish Landfill facilities using guidance generated by the European Council decision 2003/33/EC. More specifically local landfill waste acceptance criteria are considered, namely the criteria currently used at the Murphy Concrete Manufacturing Ltd. Landfill located at Hollywood Great, the Naul, Co Dublin (waste licence reference no. W0129-01) for the acceptance of Inert waste and the waste acceptance criteria used at the KTK landfill Ltd site located in Kilcullen, Co Kildare (waste licence reference no. W082-03) for the acceptance of non-hazardous waste. The results of this assessment are shown in Appendix C and Table 1 of Appendix B. It is important to note that the acceptance criteria are subject to change and the landfill capacity at both sites is limited in accordance with their respective licences.

Based on the results for both soil and soil leachability testing, numerous samples analysed exceed the inert (Murphy) waste acceptance criteria for antimony. Occasional exceedances of inert waste acceptance criteria were also recorded for chloride, fluoride, sulphate, total dissolved solids, total PAH and TPH. Occasional concentrations of PAH (Dutch 10) and diesel range organics were recorded above hazardous waste acceptance criteria for the KTK landfill. Soil sampled from BH3 recorded elevated leachable metals (As, Cr, Mo, Ni) above inert waste acceptance criteria, and leachable arsenic and selenium above non-hazardous waste acceptance criteria (KTK). Made ground sampled at this location is not visually different from the rest of the site and would therefore be impossible to separate during excavation works. The concentrations are only marginally above KTK non-hazardous waste acceptance criteria and it is therefore recommended that discussions with the landfill are held as it is likely that this material will be accepted.

The results of this assessment indicate that the majority of the soils should be considered acceptable at the KTK Landfill site. Provision should however be made for the off-shore disposal of some hazardous waste from the site based on visual/olfactory evidence of hydrocarbon contamination in the southern and eastern portion of the site, along with occasional exceedances of TPH and PAH for both Murphy and KTK waste acceptance criteria.

Notwithstanding the above, it should be noted that it is the excavation contractor's responsibility, in association with the operator/owner of the receiving site, to classify the materials for disposal/reuse using the test data obtained during both the recent and previous site investigations.

Revision 01 October 2008 Page 27 of 30

12 Conclusions

12.1 Ground conditions

The geological sequence beneath the site consists of made ground (up to 7.2m thick) overlying a thin, discontinuous layer of estuarine deposits (sandy silt) overlying or inter-bedded with the upper Glacial Till (interlayered boulder clay and gravel deposits). Limestone underlies the site at depth but was not encountered during the investigation.

Strong hydrocarbon odours were recorded in soil at the approximate water table level within the building maintenance yard in the south of the site. Elevated TPH concentrations (up to 635mg/kg) were recorded in samples anlaysed. No other visual/olfactory evidence of contamination was recorded. Metal concentrations were recorded below commercial/industrial landuse acceptance criteria with the exception of lead. Maximum recorded concentrations of metals (As, Pb, Ni and Hg) were however very highly elevated. Asbestos was not detected in any of the samples analysed, but there is potential that such material could be present within the made ground.

12.2 Controlled waters

Metals to not appear to be highly leachable based on the analytical results, and metal concentrations are not highly elevated in groundwater. Groundwater beneath the site is impacted by petroleum hydrocarbons and PAHs. Chloride, sulphate and ammoniacal nitrogen concentrations are also relatively elevated.

The groundwater table is fairly shallow beneath the site (approximately 2.5m below existing road level) and is likely to be in hydraulic continuity with the Docks located approximately 90m south of the site. The groundwater level appears to be reasonably flat across the site.

12.3 Ground gas

The ground gas regime is characterised by elevated concentrations of methane and carbon dioxide (although gas flow rates are very low). As part of the proposed development, most of the made ground across the site, and a significant volume of natural material (including that contaminated with hydrocarbons) will be excavated and removed offsite. The railway arches along Sheriff Street Lower are however being retained. Gas protection measures typical of Characteristic Situation 2 are therefore recommended within the former railway arches. Should the proposed development change, gas protection within any new buildings and services onsite will need to be re-assessed. Further ground gas monitoring and sampling should be undertaken to fully assess the ground gas regime across the site.

12.4 Risk assessment

A summary of the risk assessment for each of the three scenarios (current, during development and future use) is presented in Table 13.1 and discussed in more detail in the following text.

Table 13.1 Summary of risk assessment Receptor Curr Source People onsite Made ground Ground gas Mo (made ground, hydrocarbon impacted soil and groundwater) Hydrocarbon contaminated soil People offsite Made ground Ver Ground gas Mode (made ground, hydrocarbon impacted soil and groundwater) Hydrocarbon contaminated soil Ver Construction workers Made ground Ground gas (made ground, hydrocarbon impacted soil and groundwater) Hydrocarbon contaminated soil Hydrocarbon contaminated groundwater Flora Made ground Hydrocarbon contaminated soil

ent risk	Risk during construction	Future risk			
.ow	n/a	Very Low			
derate	n/a	Moderate/Low			
.ow	n/a	Very Low			
y Low	Moderate/Low	Very Low			
ate /Low	Moderate/Low	Very Low			
y Low	Low	Very Low			
n/a	Moderate/Low	n/a			
n/a	Moderate	n/a			
n/a	Low	n/a			
1/a	Moderate/Low	n/a			
ow	n/a	n/a			
.ow	n/a	n/a			

Receptor	Source	Current risk	Risk during construction	Future risk
Groundwater	Made ground	Moderate/Low	Moderate	Low
	Hydrocarbon contaminated soil	Moderate/Low	Moderate	Low
	Hydrocarbon contaminated	Moderate	Moderate	Moderate/Low
	groundwater			
Docks	Made ground	Low	Moderate/Low	Very Low
	Hydrocarbon contaminated soil		Ma davata /Law	N/ I
	Hydrobarbon containinated son	LOW	Moderate/Low	Very Low
	Hydrocarbon contaminated	Moderate/Low	Moderate/Low	Low
	Hydrocarbon contaminated soli groundwater	Moderate/Low	Moderate/Low	Low
Buildings /services	Hydrocarbon contaminated soli groundwater Made ground	Moderate/Low Moderate/Low	Moderate/Low Moderate/Low n/a	Low

The generic quantitative risk assessment carried out on the basis of both existing and recently acquired data indicates that there are potentially significant risks to people and the environment under the currently existing conditions.

The proposed development of the site will give rise to some temporary risks, most notably to construction workers during its development. Short-term risks to the groundwater and the Docks are likely to increase during the excavation works. This is primarily because of the potential for runoff and leaching from stockpiles, and enhanced mobilisation of contaminants in groundwater. These potential risks can be mitigated by appropriate environmental management during construction. In the long term, provided appropriate mitigation measures are constructed and the recommendations in Section 14 adopted, the risks to people and the environment can all be mitigated to acceptably low levels.

Risks to the groundwater are considered to be partially mitigated by the proposed development, which will consist of the excavation of the majority of made ground and contaminated soil material. It is therefore considered likely that with this reduction in the residual source, natural attenuation processes will be occurring at rates sufficient to be protective of human health and controlled waters. Some long term monitoring may be required to demonstrate satisfactory risk reduction is occurring by such processes.

12.5 Waste management

The results of this assessment indicate that the majority of the soils should be considered acceptable at the KTK Landfill site. Provision should however be made for the off-shore disposal of some hazardous waste from the site based on visual/olfactory evidence of hydrocarbon contamination in the southern and eastern portion of the site, along with occasional exceedances of TPH and PAH for both Murphy and KTK waste acceptance criteria. It should be noted that it is the excavation contractor's responsibility, in association with the operator/owner of the receiving landfill site, to classify the materials for disposal/reuse prior to disposal.

12.6 Foundations

Low rise structures (up to two storeys in height) could be supported by shallow foundations in the glacial till beneath basement slab level. An allowable bearing capacity of 150KPa can be adopted for preliminary design. Medium rise structures (up to ten storeys in height) could be supported by a raft foundation at basement level, founded in the glacial sands and gravels. Raft thicknesses varying from 600mm to 1000mm are likely to be required to evenly distribute column loads through the raft. For structures greater than ten storeys in height, the structure could be supported by bored pile foundations.

12.7 Buoyancy

As the basement substructure is below ground water level, the basement and buildings will need to be designed to resist uplift. The uplift can be resisted by providing bar anchors or micro piles in the basement slab.

12.8 Basement Retaining Walls

Retaining walls will be required to support the basement around the site. To maximise space within the basement and provide an open working area for construction and control seepage it is proposed to construct a secant wall to form the basement. For retained heights greater than 4m the retaining wall will require to be propped by struts or tied back with ground anchors.

12.9 Dewatering

In order to maintain stability of the basement excavation and provide dry working conditions for construction of the sub structure, a pumped dewatering system will require to be installed to lower the ground water table

12.10 Railway arches

It is recommended that intrusive coring is carried out to determine the arch construction to allow a structural assessment of the arch to be made.

12.11 Buried concrete

For all foundations an ACEC classification of AC-5 has been determined assuming groundwater is mobile

Revision 01 October 2008 Page 29 of 30

13 Recommendations

The proposed development includes a number of measures necessary to mitigate the potential risks. In summary these comprise:

- The implementation of a rigorous health & safety regime (including PPE and personal hygiene) by the construction work force;
- Construction workers should remain vigilant of ground conditions at all times and should report any suspect areas of potential contamination (especially hydrocarbon contamination);
- Stockpiling of grossly contaminated soils should be avoided if possible and where necessary, stockpiles should be covered when not in use.
- Incorporation of gas protection measures typical of CS2 into all new buildings where no excavation has been undertaken;
- Further investigation and on-going monitoring of the groundwater regime during and post construction in order to provide evidence in support of natural attenuation.
- Further liaison with Dublin City Council as to disposal options for water during temporary works.
- Further Intrusive investigation to determine stability of the existing railway arches.
- Pump testing to allow dewatering works to be designed.

Revision 01 October 2008 Page 30 of 30

References

- 1. CLR11, Model Procedures for the Management of Land Contamination, DEFRA and Environment Agency, September 2004
- 2. BRE, 2005. Special Digest 1:2005, Concrete in aggressive ground
- 3. DEFRA and Environment Agency, 2002. Soil Guideline Values, R&D Publications SGVs 1, 3-5, 7-10, 15-16.
- Environment Agency, SEPA and DEFRA 2005. Contaminated Land Exposure Assessment Model 'CLEA UK' Version 1.0. Retrieved from the internet: http://www.environment-agency.gov.uk/subjects/landquality/113813/672771/1166367/1166388/?version=1&lang=_e
- Environment Agency 2005. The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils – Science Report P5 – 080/TR3
- 6. Ministry of Housing, Spatial Planning and the Environment, 2000. Dutch Guidelines: Circular on Target Values and Intervention Values for Soil Remediation.
- 7. CL:AIRE and CIEH May 2008. Guidance on Comparing Soil Contamination Data with a Critical Concentration.
- 8. WRAS, October 2002. The Selection of Matertials for Water Supply Pipes to be Laid in Contaminated Land : Information and Guidance Note No. 9-04-03, Issue 1.
- 9. UK Drinking Water Inspectorate, 2000. The Water Supply (Water Quality) Regulations.
- 10. EPA. Towards setting guideline values for the protection of groundwater in Ireland Interim Report.
- 11. EC Dangerous Substances Directive, 76/464/EEC.
- 12. Assessing risks posed by hazardous ground gases to buildings, CIRIA Report C665, 2007

Figures

Appendix A: Generic Quantitative Risk Assessment

Table 1 Existing Condition

Source	ource		Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].	
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	normai textj	
Made ground	Heavy metals, PAH, mineral oils, sulphate, pH, asbestos.	Site wide						Clay bound gravels containing glass timber, rubber, concrete, ash and p Arsenic (50% samples) recorded ab uptake. Lead (30% samples) record SGV. The US95 values for arsenic a concentrations of other metals (Cd, recorded > SGV for residential with benzo(a)pyrene only. Maximum rec and Hg very highly elevated in occa Numerous concentrations of As, Pb material selection threshold values. Asbestos not detected, but potentia <u>Leachability</u> : Metals are not highly results.	
			Existing site users	Soil and dust ingestion/inhalation, dermal contact.	Medium	Unlikely	Low	Hardstanding over majority of site pre for exposure in areas of soft landscap therefore likely to be of short/intermitt	
			Adjacent site users	Dust ingestion/inhalation	Mild	Unlikely	Very Low	Residential properties located along e Minimal ground disturbance in existing majority of site prevents soil dust gene	
			Docks	Migration via permeable strata	Mild	Low- likelihood	Low	Majority of site covered in hardstandir leaching of contaminants. Docks are Groundwater table approx 6-7m bgl. (across site. Hydraulic continuity with l	
			Groundwater (Glacial Till and Calp Limestone)	Migration via permeable strata	Medium	Low- likelihood	Moderate /Low	Majority of site covered in hardstandir leaching of contaminants. Groundwa within a drinking water protected area	
			Below ground structures and services	Direct contact/permeation of water supply pipework	Medium	Low- likelihood	Moderate /Low	Elevated sulphate concentrations. A Numerous concentrations of As, Pb material selection threshold values. Potential for direct contact. No record or evidence of structural distress to co ground conditions.	

Comment on hazard realisation

ss, brick, sea shells, ceramics, pottery.

bove residential without plant ded above commercial/industrial and lead > SGV. Occasional I, Hg, Ni) and benzo(a)pyrene nout plant uptake. US95 > SGV for corded concentrations of As, Pb, Ni asional samples.

b, sulphate and pH > WRAS s.

ally present.

leachable based on the analytical

events accidental exposure. Potential be (<5%). Any such exposure tent exposure.

eastern and northern site boundary. ng condition. Hardstanding over neration.

ng limiting rainwater infiltration and approx 90m south of the site.

Groundwater gradient relatively flat Docks likely.

ng limiting rainwater infiltration and ater table approx 6-7m bgl. Site lies a (DWPA) for groundwater.

ACEC classification AC-5. b, sulphate and pH > WRAS s.

d of derogation to water supply and/ surrent foundations attributable to

Source		Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].	
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	inormai textj
	Copper and zinc	Landscaped area	Plants/vegetation	Root uptake	Mild	Low- likelihood	Low	Elevated copper (30%) > DIV. Less > DIV. Majority of site covered in hardstandi of landscaping (<5%). Limited vegeta
	Methane, carbon dioxide	On site						Limited monitoring programmes. I generating ground gases. Maximu methane (5.6%v/v) and carbon diox flow rates (<0.2l/hr). Characteristic 665].
			Existing site users	Gas/vapour migration and accumulation	Severe	Low- likelihood	Moderate	Potential for build up to hazardous co onsite, no gas protection in existing b incident in past.
			Adjacent site users	Gas/vapour migration and accumulation	Severe	Unlikely	Moderate /Low	Residential properties located on nor Hardstanding will encourage off-site evidence/records/complaints of odou migration within Made Ground likely 1 on north, west and south of site.

than 10% zinc > DIV. US95 for Cu

ling. Potential for uptake in any areas ation present.

Made ground and natural ground um recorded concentrations of oxide (10.6%v/v). Consistently low ic Situation 2 determined [CIRIA

concentrations in existing buildings buildings/structures. No record of

- rthern and eastern boundary of site. migration. No known
- ours by offsite residents. Gas
- to be limited by retaining structures

Source			Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected		C r	Conseque nce	Probability	Risk	- [normai text]
Hydrocarbon contaminated soil	TPH, PAHs	South of site						Strong hydrocarbon odours record building maintenance yard. Elevate 635mg/kg) recorded. Laboratory cl degraded diesel.
			Existing site users	Soil and dust ingestion/inhalation, dermal contact.	Medium	Unlikely	Low	Hardstanding over majority of site pre for exposure in areas of soft landscap therefore likely to be of short/intermit
			Adjacent site users	Dust ingestion/inhalation	Mild	Unlikely	Very Low	Residential properties located along e Minimal ground disturbance in existin majority of site prevents soil dust gen
			Docks	Migration via permeable strata	Mild	Low- likelihood	Low	Majority of site covered in hardstandi leaching of contaminants. Docks are Groundwater table approx 6-7m bgl. across site. Hydraulic continuity with
			Groundwater (Glacial Till and Calp Limestone)	Migration via permeable strata	Medium	Low- likelihood	Moderate /Low	Majority of site covered in hardstandi leaching of contaminants. Groundwa within a drinking water protected area
			Below ground services	Direct contact/permeation of water supply pipework	Medium	Low- likelihood	Moderate /Low	Potential for direct contact. No record attributable to ground conditions.
		Landscaped area	Plants/vegetation	Root uptake	Mild	Low- likelihood	Low	Majority of site covered in hardstandi of landscaping (<5%). Limited vegeta
	Methane, carbon dioxide	On site						Limited monitoring programme. M methane (100%v/v) and carbon dio concentration likely to be associate flow rates (<0.2l/hr).
			Existing site users	Gas/vapour migration and accumulation	Severe	Low- likelihood	Moderate	Potential for build up to hazardous co onsite, however consistently low flow period. No record of incident in past.

led in soil at water table level within ed TPH concentrations (up to lassification suggests highly

events accidental exposure. Potential be (<5%). Any such exposure tent exposure.

eastern and northern site boundary. ng condition. Hardstanding over neration.

ing limiting rainwater infiltration and approx 90m south of the site. Groundwater gradient relatively flat Docks likely.

ing limiting rainwater infiltration and ater table approx 6-7m bgl. Site lies a (DWPA) for groundwater.

rd of derogation to water supply

ng. Potential for uptake in any areas ation present.

aximum concentrations of xide (9.3%v/v). Methane ed with VOCs. Consistently low

oncentrations in existing buildings rates recorded over monitoring

Source		Receptor	Pathway	Risk assess	ment (following	CIRIA C665)	Description of source [bold text]. C	
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	[normal text]
			Adjacent site users	Gas/vapour migration and accumulation	Severe	Unlikely	Moderate /Low	Residential properties located on nort No known evidence/records/complair

thern and eastern boundary of site. nts of odours by offsite residents.

Source			Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected		C r	Conseque nce	Probability	Risk	[normal toxi]
Hydrocarbon contaminated groundwater	TPH, PAHs	AHs Southern and eastern portion of site						Very high hydrocarbon odours and groundwater. Consistently elevated 48mg/l) and PAH (up to 25ug/l) in g eastern portion of site. TPH conce ended (C_{12} - C_{35}). BTEX compounds (WS11).
			Docks	Migration via permeable strata	Medium	Low- likelihood	Moderate /Low	Docks are approx 90m south of the s bgl in area of hydrocarbon contamina flat across site. Hydraulic continuity w incident in past.
			Groundwater (Glacial Till and Calp Limestone)	Migration via permeable strata	Medium	Likely	Moderate	Groundwater gradient relatively flat. protected area (DWPA) for groundwa
	Methane, carbon dioxide	On site						Limited monitoring programme. M methane (100%v/v) and carbon dio concentration likely to be associate flow rates (<0.2l/hr).
			Existing site users	Gas/vapour migration and accumulation	Severe	Low- likelihood	Moderate	Potential for build up to hazardous co onsite, however consistently low flow period. No record of incident in past
			Adjacent site users	Gas/vapour migration and accumulation	Severe	Unlikely	Moderate /Low	Residential properties located on nor No known evidence/records/complai

d a slight sheen recorded in ed concentrations of TPH (up to groundwater within southern and entrations are predominantly heavy s locally elevated in groundwater

site. Groundwater table is approx 2m nation. Groundwater gradient relatively with Docks likely. No record of

Site lies within a drinking water ater.

Maximum concentrations of oxide (9.3%v/v). Methane ted with VOCs. Consistently low

concentrations in existing buildings w rates recorded over monitoring t.

orthern and eastern boundary of site. A not sof odours by offsite residents.

Table 2 Enabling works/construction phase

Source	Source			Receptor Pathway Ri	Risk assessment (following CIRIA C665)			Description of source [bold text]. C
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	[normal text]
Made ground	Heavy metals, benzo(a)pyrene, sulphate, pH.	Site wide						Clay bound gravels containing glass timber, rubber, concrete, ash and p Arsenic (50% samples) recorded ab uptake. Lead (30% samples) record SGV. The US95 values for arsenic a concentrations of other metals (Cd, recorded > SGV for residential with benzo(a)pyrene only. Maximum rec and Hg very highly elevated in occa Numerous concentrations of As, Pb material selection threshold values. Asbestos not detected, but potentia <u>Leachability</u> : Metals are not highly results.
			Enabling/ construction workforce	Soil and dust ingestion/inhalation, dermal contact.	Medium	Low- likelihood	Moderate /Low	Hardstanding over majority of site pre for exposure during excavation/earthy limited. Possibility for maximum cond Standard health and safety precautior
			Adjacent site users	Dust ingestion/inhalation	Medium	Low- likelihood	Moderate /Low	Residential properties located along e Potential for dust generation during es earthworks likely to generate large vol construction practice to restrict dust g
			Docks	Surface runoff and groundwater transport	Mild	Likely	Moderate /Low	Potential for enhanced mobilisation of and leaching of contaminants in stock approx 90m south of the site down-hy
			Groundwater (Glacial Till)	Migration via permeable strata	Medium	Likely	Moderate	Potential for enhanced mobilisation of Groundwater table approx 6-7m bgl. protected area (DWPA) for groundwat
	Methane, carbon dioxide	On site						Limited monitoring programmes. M generating ground gases. Maximur methane (5.6%v/v) and carbon diox flow rates (<0.2l/hr). Characteristic 665].

Comment on hazard realisation

ss, brick, sea shells, ceramics, pottery.

bove residential without plant ded above commercial/industrial and lead > SGV. Occasional I, Hg, Ni) and benzo(a)pyrene nout plant uptake. US95 > SGV for corded concentrations of As, Pb, Ni asional samples.

b, sulphate and pH > WRAS s.

ally present.

leachable based on the analytical

events accidental exposure. Potential works. Period of exposure relatively centrations to produce acute effects. ns likely.

eastern and northern site boundary excavation/earthworks. Scale of plumes of dust. Standard good generation likely.

of contaminants during earthworks kpiles/areas of exposure. Docks are nydraulic gradient.

of contaminants during earthworks. Site lies within a drinking water ter.

Made ground and natural ground m recorded concentrations of xide (10.6%v/v). Consistently low c Situation 2 determined [CIRIA

Source			Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	
			Enabling/ construction workforce	Gas/vapour migration and accumulation	Severe	Low- likelihood	Moderate	Potential for exposure during excavat spaces. Standard health and safety p
			Adjacent site users	Gas/vapour migration and accumulation	Severe	Unlikely	Moderate /Low	Residential properties located along e

tion/earthworks in any confined precautions likely.

eastern and northern site boundary.

Source	Source		Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	- [normai text]
Hydrocarbon contaminated soil	TPH, PAHs	South of site						Strong hydrocarbon odours record building maintenance yard. Elevate 635mg/kg) recorded. Laboratory cl degraded diesel.
			Enabling/ construction workforce	Soil and dust ingestion/inhalation, dermal contact.	Mild	Low- likelihood	Low	Hardstanding over majority of site pre- for exposure during excavation/earthe limited. Unlikely for maximum concer Standard health and safety precaution
			Adjacent site users	Dust ingestion/inhalation	Mild	Low- likelihood	Low	Residential properties located along e Potential for dust generation during e earthworks likely to generate large vo construction practice to restrict dust
			Docks	Surface runoff and groundwater transport	Medium	Low- likelihood	Moderate /Low	Potential for enhanced mobilisation o and leaching of contaminants in stock of the site.
			Groundwater (Glacial Till)	Migration via permeable strata	Medium	Likely	Moderate	Potential for enhanced mobilisation o Groundwater table is relatively deep a bgl). Site lies within a drinking water groundwater.
	Methane, carbon dioxide	Aethane, On site arbon lioxide						Limited monitoring programme. M methane (100%v/v) and carbon dio concentration likely to be associate flow rates (<0.2I/hr).
			Enabling/ construction workforce	Gas/vapour migration and accumulation	Severe	Low- likelihood	Moderate	Potential for exposure during excavat spaces. Standard health and safety p
			Adjacent site users	Gas/vapour migration and accumulation	Severe	Unlikely	Moderate /Low	Residential properties located on nor No known evidence/records/complai

led in soil at water table level within ed TPH concentrations (up to lassification suggests highly

events accidental exposure. Potential works. Period of exposure relatively ntrations to produce acute effects. ns likely.

eastern and northern site boundary excavation/earthworks. Scale of plumes of dust. Standard good generation likely.

of contaminants during earthworks kpiles. Docks are approx 90m south

of contaminants during earthworks. across majority of site (approx 6-7m protected area (DWPA) for

laximum concentrations of oxide (9.3%v/v). Methane ed with VOCs. Consistently low

tion/earthworks in any confined precautions likely.

thern and eastern boundary of site. nts of odours by offsite residents.

Source			Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected		C r	Conseque nce	Probability	Risk	[normal text]
Hydrocarbon contaminated groundwater	TPH, PAHs	Southern and eastern portion of site						Very high hydrocarbon odours and groundwater. Consistently elevated 48mg/l) and PAH (up to 25ug/l) in g eastern portion of site. TPH conce ended (C_{12} - C_{35}). BTEX compounds (WS11).
			Enabling/ construction workforce	Soil and dust ingestion/inhalation, dermal contact.	Medium	Low- likelihood	Moderate /Low	Hardstanding over majority of site pre for exposure during excavation/earth limited. Possibility for maximum con- Standard health and safety precautio
			Groundwater (Glacial Till and Calp Limestone)	Migration via permeable strata	Medium	Likely	Moderate	Potential for enhanced mobilisation o Site lies within a drinking water prote
			Docks	Migration via permeable strata	Medium	Low- likelihood	Moderate /Low	Potential for enhanced mobilisation of dewatering. Docks are approx 90m s relatively shallow in area of hydrocark Groundwater gradient appears to be hydraulic continuity with Docks. Dew of groundwater off-site.
	Methane, carbon dioxide	On site						Limited monitoring programme. M methane (100%v/v) and carbon dio concentration likely to be associate flow rates (<0.2l/hr).
			Enabling/ construction workforce	Gas/vapour migration and accumulation	Severe	Low- likelihood	Moderate	Potential for exposure during excavat spaces. Standard health and safety p
			Adjacent site users	Gas/vapour migration and accumulation	Medium	Low- likelihood	Moderate /Low	Residential properties located on nor No known evidence/records/complai

d a slight sheen recorded in ed concentrations of TPH (up to groundwater within southern and entrations are predominantly heavy s locally elevated in groundwater

revents accidental exposure. Potential nworks. Period of exposure relatively ncentrations to produce acute effects. ons likely.

of contaminants during dewatering. ected area (DWPA) for groundwater.

of contaminants during construction south of the site. Groundwater table is rbon contamination (approx 2m bgl). e relatively flat and is expected to be in watering onsite likely reduce migration

Maximum concentrations of oxide (9.3%v/v). Methane ted with VOCs. Consistently low

tion/earthworks in any confined precautions likely.

orthern and eastern boundary of site. Aints of odours by offsite residents.

Table 3 Proposed development

Source	Source			Pathway Risk a	Risk assessi	ment (following	CIRIA C665)	Description of source [bold text].
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	[normal text]
Made ground	Heavy metals, benzo(a)pyrene, sulphate, pH.	Railway arches along Sheriff Street Lower [made ground removed from all other parts of site)						Clay bound gravels containing glas timber, rubber, concrete, ash and p Arsenic (50% samples) recorded at uptake. Lead (30% samples) record SGV. The US95 values for arsenic a concentrations of other metals (Cd recorded > SGV for residential with benzo(a)pyrene only. Maximum rec and Hg very highly elevated in occa Numerous concentrations of As, Pt material selection threshold values Asbestos not detected, but potentia Leachability: Metals are not highly results.
			Future site users	Soil and dust ingestion/inhalation, dermal contact.	Mild	Unlikely	Very Low	Potential source relatively localised. I exposure.
			Adjacent site users	Dust ingestion/inhalation	Mild	Unlikely	Very Low	Potential source relatively localised. I generation.
			Docks	Migration via permeable strata	Mild	Unlikely	Very Low	Majority of made ground removed in Hardstanding limits rainwater infiltration Docks are approx 90m south of the si bgl. Groundwater gradient relatively fl with Docks likely.
			Groundwater (Glacial Till and Calp Limestone)	Migration via permeable strata	Mild	Low- likelihood	Low	Majority of made ground removed in Hardstanding limits rainwater infiltration Groundwater table approx 2m bgl. So protected area (DWPA) for groundwater
			Below ground structures and services	Direct contact/permeation of water supply pipework	Mild	Low- likelihood	Low	Elevated sulphate concentrations. A Numerous concentrations of As, Pt material selection threshold values Potential for direct contact beneath a water supply and/ or evidence of stru

Comment on hazard realisation

ss, brick, sea shells, ceramics, pottery.

bove residential without plant ded above commercial/industrial and lead > SGV. Occasional I, Hg, Ni) and benzo(a)pyrene nout plant uptake. US95 > SGV for corded concentrations of As, Pb, Ni asional samples.

b, sulphate and pH > WRAS 5.

ally present.

leachable based on the analytical

Hardstanding prevents accidental

Hardstanding prevents soil dust

proposed development.

ion and leaching of contaminants.

ite. Groundwater table approx 2m

lat across site. Hydraulic continuity

proposed development.

ion and leaching of contaminants.

ite lies within a drinking water ter.

ACEC classification AC-5. b, sulphate and pH > WRAS S.

arches. No record of derogation to uctural distress to current foundations

Source			Receptor	Pathway	Risk assessment (following CIRIA C665)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	[normai text]
								attributable to ground conditions.
	Methane, carbon dioxide	Railway arches						Limited monitoring programmes. I generating ground gases. Maximu methane (5.6%v/v) and carbon diox flow rates (<0.2l/hr). Characteristic 665].
			Existing site users	Gas/vapour migration and accumulation	Medium	Low- likelihood	Moderate /Low	Majority of Made Ground removed in build up to hazardous concentrations flow rates recorded over monitoring p
			Adjacent site users	Gas/vapour migration and accumulation	Mild	Unlikely	Very Low	Majority of Made Ground removed in properties located on northern and ea evidence/records/complaints of odou

Made ground and natural ground um recorded concentrations of oxide (10.6%v/v). Consistently low ic Situation 2 determined [CIRIA

proposed development. Potential for s in arches, however consistently low period.

n proposed development. Residential eastern boundary of site. No known urs by offsite residents.

Source			Receptor	Pathway	Risk assessment (following CIRIA C552)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	- [normai text]
Hydrocarbon contaminated soil	TPH, PAHs	Railway arches along Sheriff Street Lower [hydrocarbo n impacted soil removed from all other parts of site)						Strong hydrocarbon odours record building maintenance yard. Elevat 635mg/kg) recorded. Laboratory cl degraded diesel.
			Future site users	Soil and dust ingestion/inhalation, dermal contact.	Mild	Unlikely	Very Low	Majority of hydrocarbon impacted so Potential source relatively localised. exposure.
			Adjacent site users	Dust ingestion/inhalation	Mild	Unlikely	Very Low	Majority of hydrocarbon impacted so Potential source relatively localised. generation.
			Docks	Migration via permeable strata	Mild	Unlikely	Very Low	Majority of hydrocarbon impacted so Hardstanding limits rainwater infiltrati Docks are approx 90m south of the s bgl. Groundwater gradient relatively f with Docks likely.
			Groundwater (Glacial Till)	Migration via permeable strata	Mild	Low- likelihood	Low	Majority of hydrocarbon impacted so Hardstanding limits rainwater infiltrati Groundwater table approx 2m bgl. S protected area (DWPA) for groundwa
			Below ground services	Direct contact/permeation of water supply pipework	Mild	Low- likelihood	Low	Majority of hydrocarbon impacted so Potential for direct contact beneath a water supply and/ or evidence of stru attributable to ground conditions.

ded in soil at water table level within ted TPH concentrations (up to classification suggests highly

bil removed in proposed development. Hardstanding prevents accidental

bil removed in proposed development. Hardstanding prevents soil dust

oil removed in proposed development. tion and leaching of contaminants. site. Groundwater table approx 2m flat across site. Hydraulic continuity

oil removed in proposed development. tion and leaching of contaminants. Site lies within a drinking water ater.

bil removed in proposed development arches. No record of derogation to uctural distress to current foundations

Source	Source		Receptor	Pathway	Risk assessr	ment (following	CIRIA C552)	Description of source [bold text].
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	[norman toxt]
	Methane, carbon dioxide	On site						Limited monitoring programme. Ma methane (100%v/v) and carbon diox concentration likely to be associate flow rates (<0.2l/hr).
			Existing site users	Gas/vapour migration and accumulation	Medium	Low- likelihood	Moderate /Low	Majority of hydrocarbon impacted soi Proposed development consists of a majority of site which is considered to Potential for build up to hazardous co however consistently low flow rates re
			Adjacent site users	Gas/vapour migration and accumulation	Mild	Unlikely	Very Low	Majority of impacted soil removed in p properties located on northern and ea evidence/records/complaints of odou

aximum concentrations of xide (9.3%v/v). Methane ed with VOCs. Consistently low

il removed in proposed development. two storey basement carpark across o provide adequate ventilation. oncentrations in beneath arches, ecorded over monitoring period.

proposed development. Residential astern boundary of site. No known urs by offsite residents. .

Source			Receptor	Pathway	Risk assessment (following CIRIA C552)			Description of source [bold text].
Origin	Contaminants of concern	Zone affected			Conseque nce	Probability	Risk	- [normantext]
Hydrocarbon contaminated groundwater	TPH, PAHs	Southern and eastern portion of site						Very high hydrocarbon odours and groundwater. Consistently elevated 48mg/l) and PAH (up to 25ug/l) in g eastern portion of site. TPH conce ended (C_{12} - C_{35}). BTEX compounds (WS11).
			Docks	Migration via permeable strata	Mild	Low- likelihood	Low	Majority of residual soil source removare close to the site (approx. 90m S). Groundwater gradient relatively flat a continuity with Docks.
			Groundwater (Glacial Till and Calp Limestone))	Migration via permeable strata	Medium	Low- likelihood	Moderate /Low	Majority of residual soil source remov Groundwater flow relatively flat acros water protected area (DWPA) for grou
	Methane, carbon dioxide	Railway arches						Limited monitoring programme. M methane (100%v/v) and carbon dio concentration likely to be associate flow rates (<0.2l/hr).
			Existing site users	Gas/vapour migration and accumulation	Medium	Low- likelihood	Moderate /Low	Majority of residual soil source remove Proposed development consists of a majority of site which is considered to Potential for build up to hazardous consistently low flow rates recorded incident in past.
			Adjacent site users	Gas/vapour migration and accumulation	Medium	Unlikely	Low	Majority of residual soil source remove Residential properties located on nor No known evidence/records/complai

d a slight sheen recorded in ed concentrations of TPH (up to groundwater within southern and entrations are predominantly heavy s locally elevated in groundwater

oved in proposed development. Docks b. Groundwater table is approx 2m bgl. and is expected to be in hydraulic

oved in proposed development. ss site. Site lies within a drinking bundwater.

Maximum concentrations of oxide (9.3%v/v). Methane ted with VOCs. Consistently low

a two storey basement carpark across to provide adequate ventilation. concentrations in arches, however

wed in proposed development. In thern and eastern boundary of site. A house of odours by offsite residents. Appendix B: Laboratory Analytical Results

MG - Made Ground SS -Sandy Silt (with sea shells) GR - Gravel BC -Gravelly Clay

NIP - No Identification Possible

1 - Soil Guideline Values - DEFRA & Environment Agency (2002). "The Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms". CLR10 and R&D Publication SGV1, 3, 5, 7,9 & 10 2 - Dutch Guidelines - Circular on Target Values and Intervention Values for Soil Remediation, Ministry of Housing, Spatial Planning and the Environment (2000) 3 - Murphy Environmental Inerventione Criteria 4 - KTK Landfill Hazardous Waste Acceptance Criteria

Table 1 - Soil Results

Borehole Location	WS6	WS11	BH5
Sample Depth	4m	3m	2m
Strata	MG	GC	MG
1/00-			
Dichlorodifluoromothano	-2	-2	-2
Chloromethane	~2	~2	<2
Vinyl Chloride	~3	<3	<3
Bromomethane	<5	<5	<5
Chloroethane	<25	<2.5	<25
Trichlorofluoromethane	<1.5	<1.5	<1.5
1.1-Dichloroethene	<2	<2	<2
Carbon Disulphide	<1	<1	<1
Dichloromethane	<4	<4	<4
Tert-butyl methyl ether	<3	<3	<3
Trans-1,2-Dichoroethene	<2	<2	<2
1,1-Dichloroethane	<2	<2	<2
Cis-1,2-Dichloroethene	<2	<2	<2
2,2-Dichloropropane	<3	<3	<3
Bromochloromethane	<6	<6	<6
Chloroform	<2	<2	<2
1,1,1-Trichloroethane	<1.5	<1.5	<1.5
1,1-Dichloropropene	<2	<2	<2
Carbontetrachloride	<1	<1	<1
1,2-Dichloroethane	<5	<5	<5
Benzene	<2	<2	<2
Trichloroethene	<2	<2	<2
1,2-Dichloropropane	<3	<3	<3
Dibromomethane	<8	<8	<8
Bromodicnioromethane	<3	<3	<3
CIS-1,3-Dichloropropene	<3.5	<3.5	<3.5
Tonuene	<1	<1	<1
1 1 2-Trichloroethane	<4	<4	<4
1 3-Dichloropropape	~5	~5	~5
Tetrachloroethene	<1	<1	<1
Dibromochloromethane	<4	<4	<4
1.2-Dibromoethane	<5	<5	<5
Chlorobenzene	<1	<1	<1
1,1,1,2-tetrachloroethane	<2	<2	<2
Ethylbenzene	<1	<1	<1
p/m-Xylene	<2	18	<2
o-Xylene	<1	<1	<1
Styrene	<1	<1	<1
Bromoform	<7	<7	<7
Isopropylbenzene	<1	5	<1
1,1,2,2-Tetrachloroethane	<8	<8	<8
1,2,3-Trichloropropane	<8	<8	<8
Bromobenzene	<2	<2	<2
Propylbenzene	<1	10	<1
2-Chlorotoluene	<1	<1	<1
1,3,5- I rimethylbenzene	<1	11	<1
4-Chiorotoluene	<1	<1	<1
	<1	<1	<1
1,2,4- I rimetnyibenzene	<1	/1	<1
	<1	3 1	<1
1 3-Dichlorobenzono	~1	~1	~1
1 4-Dichlorobenzene	~2	~2	~2
n-Rutylbenzene	~2	~2	~2
1 2-Dichlorohenzene	<2	<2	<2
1.2-Dibromo-3-Chloropropar	<13	<13	<13
1.2.4-Trichlorobenzene	<3	<3	<3
Hexachlorobutadiene	<2	<2	<2
Naphthalene	<4	<4	<4
1,2,3-Trichlorobenzene	<2.5	<2.5	<2.5

Borehole Location	WS6	WS11
Sample Depth	4m	3m
Strata	MG	GC
SVOCs		
Phenol	<100	<100
2-Chlorophenol	<100	<100
2-Methylphenol	<100	<100
4-Methylphenol	<100	<100
2-Nitrophenol	<100	<100
4-Nitrophenol	<100	<100
2,4-Dichlorophenol	<100	<100
2,4-Dimethylphenol	<100	<100
4-Chloro-3-methylphenol	<100	<100
2,4,6-Trichlorophenol	<100	<100
2,4,5-Trichlorophenol	<100	<100
Pentachlorophenol	<100	<100
1,3-Dichlorobenzene	<100	<100
1,4-Dichlorobenzene	<100	<100
1,2-Dichlorobenzene	<100	<100
1,2,4-1 hchlorobenzene	<100	<100
	<100	<100
Heyachlorobenzono	<100	<100
Naphthalopo	<100	<100
	<100	<100
Acenaphthylene	<100	<100
Fluorene	<100	<100
Phenanthrene	<100	<100
Anthracene	<100	<100
Fluoranthrene	163	185
Pyrene	130	153
Benzo(a)anthracene	<100	<100
Chrysene	<100	<100
Benzo(b)fluoranthrene	<100	<100
Benzo(k)fluoranthrene	<100	<100
Benzo(a)pyrene	<100	<100
Indeno(1,2,3-cd)pyrene	<100	<100
Dibenzo(a,h)anthracene	<100	<100
Benzo(ghi)perylene	<100	<100
2-Chloronaphthalene	<100	<100
	<100	<100
	<100	<100
Dibenzofuran	<100	<100
Diperizolulari	<100	<100
Direthyl phthalate	<100	<100
Di-n-butylphthalate	<100	<100
Di-n-octylphthalate	<100	<100
Bis(2-ethylhexyl)phthalate	<100	1663
Butylbenzylphthalate	<100	<100
4-Chloroaniline	<100	<100
2-Nitroanaline	<100	<100
3-Nitroaniline	<100	<100
4-Nitroaniline	<100	<100
2,4-Dinitrotoluene	<100	<100
2,6-Dinitrotoluene	<100	<100
Bis(2-chloroethyl)ether	<100	<100
4-Bromophenylphenylether	<100	<100
4-Chlorophenylphenylether	<100	<100
Hexachloroethane	<100	<100
Hexachlorobutadiene	<100	<100
Hexchlorocyclopentadiene	<100	<100
Bis(2-chioroethoxy)methane	<100	<100
na-muosou-n-propylamine	<100	<100
1	L	

All results given in ug/kg

MG - Made Ground

SS -Sandy Silt (with sea shells) GR - Gravel

BC -Gravelly Clay
Table 2 - Leachate Results		Sample Location																				
Sample Identity			WS1			WS2		WS3	WS4	WS5	W	S6	WS8	WS11	BI	H3		BH4		BH 5	BH7	Irish Interim
Depth		1.00	3.00	5.00	1.00	3.00	5.00	4.00	2.00	2.00	1.00	4.00	2.00	2.00	1.00	2.0	1.00	5.0-5.3	6.0-6.3	2.00	6.50	Guideline
Strata		MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	SS	MG	MG	MG	MG	MG	MG	GC	value
Metals																						
Dissolved Mercury Low CEN 10:1 Leachate	mg/l	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.0001	0.0002	< 0.00005	< 0.00005	0.001
Total Dissolved Solids in CEN 10:1 Leachate	mg/l	104	114	-	98	98	-	458	94	646	106	120	140	306	122	126	126	-	-	590	204	1000
Total Phenols in CEN 10:1 Leachate	mg/l	< 0.01	< 0.01	-	< 0.01	<0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			< 0.01	-	-	< 0.01	< 0.01	0.0005
Dissolved Antimony Low CEN 10:1 Leach	mg/l	0.007	0.005	0.003	0.004	0.004	0.004	0.006	0.007	0.002	0.004	0.011	0.009	0.013	0.007	0.004	0.003	0.13	< 0.0075	0.001	0.004	
Dissolved Arsenic Low CEN 10:1 Leach	mg/l	0.009	0.008	< 0.001	0.01	0.012	< 0.001	0.002	0.014	< 0.01	0.004	0.004	0.014	0.001	0.243	0.151	0.002	0.073	0.029	< 0.001	<0.001	0.01
Dissolved Barium Low CEN 10:1 Leach	mg/l	0.249	0.236	0.25	0.205	0.214	0.247	0.322	0.18	0.253	0.181	0.3	0.231	0.271	0.714	0.886	0.233	0.32	0.30	0.242	0.315	0.1
Dissolved Boron Low CEN 10:1 Leach	mg/l	-	0.082	0.132	-	0.075	0.132	-	0.021	-	0.045	0.171	-	-	-	0.027	0.067	<0.2	<0.2	0.065	-	1
Dissolved Cadmium Low CEN 10:1 Leach	mg/l	< 0.0004	< 0.0004	0.0012	< 0.0004	< 0.0004	0.0007	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0022	< 0.0022	< 0.0004	< 0.0004	0.005
Dissolved Chromium Low CEN 10:1 Leach	mg/l	0.002	0.003	0.003	0.002	0.004	0.002	0.002	0.008	0.004	< 0.001	< 0.001	0.002	<0.001	0.374	0.215	0.004	< 0.01	<0.01	< 0.001	< 0.001	0.03
Dissolved Copper Low CEN 10:1 Leach	mg/l	0.036	0.053	0.032	0.022	0.028	0.028	0.057	0.034	0.041	0.112	0.05	0.05	0.038	0.237	0.04	0.026	0.027	0.057	0.038	0.034	0.03
Dissolved Lead Low CEN 10:1 Leach	mg/l	< 0.001	< 0.001	0.007	< 0.001	< 0.001	0.001	< 0.001	0.004	0.003	0.006	0.006	< 0.001	0.003	0.005	0.003	< 0.001	0.017	0.004	0.001	0.001	0.01
Dissolved Molybdenum Low CEN 10:1 Leach	mg/l	0.012	0.023	0.037	0.033	0.018	0.029	0.039	0.003	0.032	0.006	0.064	0.026	0.048	0.006	0.004	0.013	0.45	0.24	0.017	0.011	
Dissolved Nickel Low CEN 10:1 Leach	mg/l	< 0.001	< 0.001	0.008	< 0.001	< 0.001	0.003	0.004	0.017	0.012	0.008	0.011	< 0.001	0.013	0.375	0.339	< 0.001	0.039	0.087	0.006	0.014	0.02
Dissolved Selenium Low CEN 10:1 Leach	mg/l	0.004	0.002	< 0.001	0.004	0.002	0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001	0.003	<0.001	0.067	0.053	0.002	0.05	0.05	< 0.001	0.019	
Dissolved Zinc Low CEN 10:1 Leach	mg/l	0.015	0.017	0.133	0.004	0.011	0.096	0.085	0.017	0.044	0.028	0.039	0.009	0.073	0.083	0.049	0.007	<0.05	<0.05	0.048	0.019	0.1
Other inorganics																						
Chloride in CEN 10:1 Leachate	mg/l	3.7	2.4	-	2.3	2.2	-	4.4	1.2	2	1.4	2.2	3.3	3.5	8.3	2	3.2	-	-	3.7	82.3	30
Fluoride in CEN 10:1 Leachate	mg/l	2	0.7	-	1.2	0.9	-	0.7	0.6	0.2	0.8	0.3	0.9	0.3	0.5	0.2	0.5	-	-	0.3	0.4	1
Sulphate in CEN 10:1 Leachate	mg/l	5.4	10.8	-	5	11	-	230.2	4.2	427.8	5.3	40.9	18.4	72.1	13	24.1	42.5	-	-	466.8	33.5	200
COD Filtered in CEN 10:1 Leachate	mg/l	-	<1.5	-	-	<1.5	-	-	<1.5	-	<1.5	2.3	-	-	-	5.1	<1.5	-	-	<1.5	-	
Organics																						
Dissolved Organic Carbon in CEN 10:1 Leachate	mg/l	3.1	<2.0	-	2	2.1	-	3	<2.0	<2.0	<2.0	7.4	3.5	8	<2.0	2.7	<2.0	-	-	<2.0	<2.0	

MG - Made Ground

SS -Sandy Silt (with sea shells) GR - Gravel

BC -Gravelly Clay

Table 3 - Groundwater Results	1													Location														
Table 5 - Groundwater Results		1			1		1			1				Location			1		1			1			1			-
	Borehole		BH1		В	H2		BH3				H4			BH5			BH6		BH7			WS7			WS11		Irish Interim
	Sampling date	04-Sep-08	10-Sep-08	17-Sep-08	8 10-Sep-08	17-Sep-08	29-Aug-08	04-Sep-08	10-Sep-08	8 29-Aug-08	04-Sep-08	04-Sep-08	10-Sep-08	8 29-Aug-08	10-Sep-08	3 17-Sep-08	3 10-Sep-08	17-Sep-08	29-Aug-08	04-Sep-08	10-Sep-08	29-Aug-08	04-Sep-08	10-Sep-08	8 29-Aug-08	04-Sep-08	10-Sep-08	Guideline Value
De terreire est	C				HC odour &	slight sheen	High HC odou	ur. Slight sheer	n on 3rd round	i	Sample contaminated in	Re-analysed	i				Slight HC odd	our & slight sheen				5	Slight HC odou	ır	Very high H	IC odour &	slight sheen	
Metals	comments										metals analysis																	
Dissolved Antimony Low Level	ug/l	1	<1	2	<1	3	3	1	<1	5	<1	-	<1	3	3	4	<1	<1	<1	<1	1	11	21	20	<1	3	2	
Dissolved Arsenic Low Level	ug/l	1	<1	2	2	3	3	<1	<1	5	2	· ·	<1	10	9	10	2	3	5	8	8	3	8	1	2	6	4	10
Dissolved Berylium Low Level	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	· ·	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1000
Dissolved Boron Low Level	ug/i	<0.4	<0.4	<0.4	457	<0.4	0.4	0.5	o	<0.4	35		41	<0.4	<0.4	<0.4	308	114 <0.4	1250	1010	1141	<0.4	<0.4	457 <04	< 0.4	< 0.4	<0.4	5
Dissolved Chromium Low Level	ug/l	<1	1	<1	<1	1	4	3	<1	2	126	6	1	13	1	1	<1	<1	7	2	3	7	1	<1	9	<1	<1	30
Dissolved Copper Low Level	ug/l	2	3	1	3	2	3	7	4	5	15	· ·	5	4	5	5	<1	2	8	8	4	5	9	5	4	9	1	30
Dissolved Lead Low Level	ug/l	1	16	<1	<1	<1	<1	19	1	2	34	· ·	1	2	4	<1	<1	3	<1	4	1	2	35	2	6	62	2	10
Dissolved Nickel Low Level	ug/l	6	6	4	7	4	5	7	2	4	68	· ·	2	17	17	19	7	10	14	13	13	10	10	8	8	15	12	20
Dissolved Selenium Low Level	ug/l	12	8	11	3	10	10	<1	3	8	2		<1 18	<1 57	<1	32	<1 27	<1 27	31	28	27	1	10	<1	<1	<1 72	2	100
Dissolved Arready Low Level	ug/l	- 21	<0.05	<0.05	< 0.05	<0.05	0.08		< 0.05	0.05	-		0.05	< 0.05	<0.05	<0.05	0.07	< 0.05	< 0.05	- 25	0.06	< 0.05	- 30	< 0.05	< 0.05	- '2	< 0.05	1
	_																											
Other Inorganics																												
Total Hardness	mg/l	472	520	508	799	701	573	162	90	610	391	-	281	1610	1564	1552	776	455	1986	1806	1906	1182	1337	982	450	548	748	200
COD Unfiltered	mg/l	204	366	<15	178	42	43 73	9 144	<∠ 593	<15	129		229	897	280	<15	402	327	72	350	<2 660	2242	696	574	4 912	4 339	35	
Chloride	mg/l	841	800	672	1792	1214	1790	62	38	925	624	-	493	29	35	29	20	15	6475	7208	7750	15	2011	16	14	17	17	30
Sulphate	mg/l	393	342	313	308	261	268	39	19	302	183	-	128	952	1021	976	91	89	841	1003	992	777	826	770	72	73	101	200
Sulphide	mg/l	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	
Free Cyanide	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01	<0.01	< 0.01	0.01
oH	pH Units	7.59	<0.2 7.71	<0.2 7.68	7.29	7.86	<0.2 7.76	<0.2 7.89	<0.2 7.92	10.05	<0.2 7.57	-	<0.2 7.80	7.07	7.02	7.58	7.14	7.42	7.37	7.95	7.54	7.33	4.9	2.0	7.14	4.0	20.8	0.15 >6.5 and <9.5
F · · ·	P																											
Organics																												
Total Organic Carbon	mg/l	<2	<2	3	9	10	6	<2	12	6	<2	-	3	7	7	7	7	14	4	<2	3	7	<2	7	10	<2	7	500
Total Phenols	mg/l	0.02	<0.01	0.18	<0.01	0.13		0.03	<0.01		0.03	-	<0.01		<0.01	0.09	<0.01	0.03		<0.01	<0.01		0.02	<0.01		0.03	<0.01	500
Hydrocarbons																												
PRO	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	7.902	10.656	2.193	
ТРН	mg/l	<0.01	<0.01	<0.01	41.193	6.553	48.32	<0.01	24.03	0.175	<0.01	-	<0.01	0.5782	<0.01	0.261	0.336	<0.01	0.112	<0.01	<0.01	1.015	< 0.01	0.268	26.891	15.1488	15.686	0.01
MTBE	mg/l	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.014	0.017	0.03
Benzene	mg/l	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.031	< 0.01	0.001
Ethylbenzene	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.211	0.013	0.015	0.01
Xylene	mg/l	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	-	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.527	0.035	0.023	0.01
Aliphatics		-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01		-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.01	0.01	0.01	0.400	1 004	0.024	
	mg/l	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.138	1.004	0.034	
EC>C8-C10	mg/l	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.9488	1.6496	0.3156	
EC>C10-C12	mg/l	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.2728	1.4032	0.3444	
EC>C12-C16	mg/l	<0.01	<0.01	<0.01	0.226	<0.01	<0.01	<0.01	0.111	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	1.734	0.1031	1.152	
EC>C16-C21	mg/l	<0.01	< 0.01	<0.01	1.088	< 0.01	< 0.01	<0.01	0.761	< 0.01	<0.01	-	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.444	0.0667	0.443	
EC>C21-C35 Total Aliobatics	mg/l	<0.01	<0.01	<0.01	15.312	<0.01	<0.01	<0.01	8.376	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
	ing/i	20.01	20.01	20.01	10.020	20.01	<0.01	-0.01	0.240	NO.01	20.01		<0.01	20.01	<0.01	20.01	-0.01	20.01	20.01	20.01	20.01	<0.01	<0.01	<0.01	3.7700	0.1330	2.745	
Aromatics																												
EC C6-C7	mg/l	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	-	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	0.031	<0.01	
EC>C7-C8	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	-	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.019	< 0.01	< 0.01	
EC>C10-C12	mg/l	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01		< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	1.9092	2.5224	0.5114	
EC>C12-C16	mg/l	< 0.01	< 0.01	< 0.01	18.08	6.553	48.32	<0.01	12.045	0.13	< 0.01	-	<0.01	0.4452	< 0.01	0.261	0.301	<0.01	0.099	< 0.01	< 0.01	0.66	< 0.01	0.183	14.858	4.337	10.672	
EC>C16-C21	mg/l	<0.01	<0.01	<0.01	6.049	<0.01	<0.01	<0.01	2.434	0.035	<0.01	-	<0.01	0.101	<0.01	<0.01	0.035	<0.01	0.013	<0.01	<0.01	0.269	< 0.01	0.061	1.848	< 0.01	1.131	
EC>C21-C35	mg/l	< 0.01	< 0.01	< 0.01	0.438	< 0.01	< 0.01	< 0.01	0.303	0.01	< 0.01	-	< 0.01	0.032	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.086	< 0.01	0.024	0.105	< 0.01	0.112	
l otal Aromatics	mg/l	<0.01	<0.01	<0.01	24.567	6.553	48.32	<0.01	14.782	0.175	<0.01	-	<0.01	0.5782	<0.01	0.261	0.336	<0.01	0.112	<0.01	<0.01	1.015	<0.01	0.268	20.9004	8.9952	12.943	
PAHs																												
Naphthalene	ng/l	<10	<10	<10	117	13	531	<10	70	28	<10	-	<10	20	<10	<10	13	382	31	<10	<10	37	<10	<10	617	<10	<10	1000
Acenaphthylene	ng/l	<10	<10	<10	4631	5201	33067	<10	3775	23	<10	-	<10	11	<10	<10	13	1147	<10	<10	<10	18	<10	<10	2350	<10	18	
Acenaphthene	ng/l	<10	<10	<10	1836	1222	6966	<10	1099	22	<10	-	<10	29	<10	<10	38	1693	11	<10	<10	32	<10	<10	2996	<10	45	
Phenanthrene	ng/l	<10	<10	<10	3303	67	2803	<10	2106	34	<10		<10	40 159	<10	<10	88	3062	40	<10	<10	187	< 10	< 10	3956	< 10	45 61	
Anthracene	ng/l	<10	<10	<10	1901	19	2221	<10	1396	13	<10	-	<10	43	<10	<10	29	596	<10	<10	<10	86	<10	<10	480	<10	25	1000000
Fluoranthene	ng/l	<10	<10	<10	2407	<10	578	<10	1135	11	<10	-	<10	83	<10	<10	45	1318	<10	<10	<10	141	<10	<10	1792	<10	37	1000
Pyrene	ng/l	<10	<10	<10	1975	<10	1094	<10	982	11	<10	-	<10	75	<10	<10	41	1075	<10	<10	<10	117	<10	<10	1554	<10	30	
Benzo(a)anthracene	ng/l	<10	<10	<10	1867	<10	<10	<10	647	<10	<10	-	<10	27	<10	<10	13	430	<10	<10	<10	85	<10	<10	635	<10	<10	
Benzo(b)+Benzo(k) fluoranthene	ng/l	<10	<10	<10	2070	<10	<10	<10	903	17	<10		<10	36	<10	<10	10	321	<10	<10	<10	60	<10	< 10	545	< 10	<10	50*
Benzo(a)pyrene	ng/l	<10	<10	<10	714	<10	<10	<10	453	<10	<10	-	<10	15	<10	<10	<10	148	<10	<10	<10	53	<10	<10	206	<10	<10	10
Indeno(123cd)pyrene	ng/l	<10	<10	<10	204	<10	<10	<10	252	<10	<10	-	<10	12	<10	<10	<10	69	<10	<10	<10	41	<10	<10	117	<10	<10	50
Dibenzo(ah)anthracene	ng/l	<10	<10	<10	190	<10	<10	<10	86	<10	<10	-	<10	18	<10	<10	<10	30	<10	<10	<10	29	<10	<10	77	<10	<10	
Benzo(ghi)perylene	ng/l	<10	<10	<10	248	<10	<10	<10	217	<10	<10	-	<10	14	<10	<10	<10	82	<10	<10	<10	57	<10	<10	128	<10	<10	50
TOTAL AQUEOUS TO EPA PAHS	ng/i	<10	<10	<10	20399	03/0	40071	<10	15304	208	<10	-	<10	808	<10	<10	347	12443	149	<10	<10	1105	< 10	< 10	17734	< 10	2/5	100
PCBs																												
PCB Congener 28	ng/l	-	-	-	-	-	-	<10	<10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PCB Congener 52	ng/l	-	-	-	- 1	-	-	<10	<10	- 1	-		-	-	- 1	-	l -	-	- 1	-	-	-	- 1	- 1	· ·	-	-	
PCB Congener 101 PCB Congener 118	ng/l	1 -	- 1	1 -		-	-	<10	<10	- 1	-	-	-	1 -	- 1	-	-	-	-	-	-	-	-	- 1	1 -	-	-	
PCB Congener 153	ng/l]]	1 .			<10	<10	1 1]		1]]	1 1	1	1 .				1 -	1]				
PCB Congener 138	ng/l	· ·	-	-		-	-	<10	<10	-	-	-	-	· ·	-	-	-	-	-	-	-	-	-	-	- I	-	-	
PCB Congener 180	ng/l	·	-	-	·	-	-	<10	<10	-	-	-	-	·	-	-	-	-	-	-	-	-	-	-	·	-	-	
PCB Total of 7 Congeners	ng/l	1 -		-	1 -	- 1	- 1	<10	<10	- 1	-		- 1	1 -	- 1	- 1		-	1 -	-	- 1	- 1	-	- 1	1 -	-	- 1	1000

Notes
* IGV for benzo(k)fluroanthene taken as most conservative

Table 4: GROUND GAS ASSESSMENT	Job name:Connolly Station	Job number:023956	
	-	•	
NOTES:			
Assessment based on guidance published in	1 CIRIA C665 'Assessing risks pose	d by hazardous ground gases to buildings.'	
Information from Table 8.5 of CIRIA C665			Key for shading
Characteristic Situation 1 conditions			CO2 > 5% in air
Gas screening value (CH4 or CO2) < 0.07 l/h			CH4 > 1 % in air
Typically methane < 1 % by volume			GSV > or = 0.07 l/h
Typically carbon dioxide < 5% by volume			GSV> or = 0.7 l/h
Characteristic Situation 2 conditions			
Gas screening value (CH4 or CO2) < 0.7 l/h			
Borehole air flow rate < 70 l/h			
Characteristic Situation 3 conditions			
Gas screening value (CH4 or CO2) < 3.5 l/h			
Approach:			
Maximum concentration and flow values a	are used in the assessment below	v (minimum values for oxygen).	
Where no detectable flow is recorded the	instrument limit of detection is u	sed	
Where concentrations are recorded below	v LoD, the instrument LoD is used	d in the assessment (0.5%)	

SITE MONITORING DATA

				Gas measurements					CO ₂ a	nalysis	CH₄ a	nalysis	
Investigation & Year of installation	Exploratory Hole	Response zone stratum	Date Monitored/ Sampled	Flow Rate (l/hr)	Atmos Pres (mb)	Min O2 (%) air	Max CO2 (% air)	Max CH4 (% air)	CO2 as fraction	Gas screening value CO ₂ (I/hr)	CH₄ as fraction	Gas screening value CH ₄ (I/hr)	Characteristic Situation
			29-Aug-08	0.2	1017	17.2	2.9	0.1	0.029	0.006	0.001	0.000	1
			04-Sep-08	0.2	990	13.1	5	0.1	0.050	0.010	0.001	0.000	1
Giovers 2008	VV56	MG	10-Sep-08	0	1000	14.5	3.5	0.1	0.035	0.004	0.001	0.000	1
			17-Sep-08	0	1019	8.5	6.4	0.1	0.064	0.006	0.001	0.000	2
	1		29-Aug-08	0	1016	18.6	1.9	0.1	0.019	0.002	0.001	0.000	1
	14/00		04-Sep-08	0.2	991	18.6	1.9	0.1	0.019	0.004	0.001	0.000	1
Giovers 2008	VV59	MG	10-Sep-08	0.1	999	19.9	0.7	0.1	0.007	0.001	0.001	0.000	1
			17-Sep-08	0.1	1019	20	0.7	0.2	0.007	0.001	0.002	0.000	1
	1		29-Aug-08	0	1017	20.3	0.1	0.1	0.001	0.000	0.001	0.000	1
01	14/040	110	04-Sep-08	0.1	992	20.1	0.1	0.1	0.001	0.000	0.001	0.000	1
Giovers 2008	VVS10	MG	10-Sep-08	0	999	20.1	0.1	0.1	0.001	0.000	0.001	0.000	1
			17-Sep-08	0	1019	19.2	0.2	5.6	0.002	0.000	0.056	0.006	2
	1		04-Sep-08	0.1	992	19.6	1.5	0.4	0.015	0.002	0.004	0.000	1
Glovers 2008	WS12	MG	10-Sep-08	0.1	998	19.1	1.5	0.1	0.015	0.002	0.001	0.000	1
			17-Sep-08	0.1	1019	19.3	1.3	0.1	0.013	0.001	0.001	0.000	1
	1		29-Aug-08	0.2	1017	9.1	7.7	0.1	0.077	0.015	0.001	0.000	2
Clause 2008	WED	MC/SLT	04-Sep-08	0.2	990	7.6	9.4	0.1	0.094	0.019	0.001	0.000	2
Glovers 2008	VV33	MG/SL1	10-Sep-08	0.1	999	7.8	10.6	0.1	0.106	0.011	0.001	0.000	2
			17-Sep-08	0.2	1019	7.5	10.2	0.1	0.102	0.020	0.001	0.000	2
			29-Aug-08	0.1	1016	15.7	3	0.1	0.030	0.003	0.001	0.000	1
Clause 2008	14/87	MC/BC	04-Sep-08	0	990	16.1	2.6	0.1	0.026	0.003	0.001	0.000	1
Glovers 2008	1137	WG/BC	10-Sep-08	0	1001	20.2	0.2	0.1	0.002	0.000	0.001	0.000	1
			17-Sep-08	0	1019	16.2	2.5	0.1	0.025	0.003	0.001	0.000	1
			29-Aug-08	0.2	1017	15	3.8	0.2	0.038	0.008	0.002	0.000	1
Glovert 2008	WS11	SI T/BC	04-Sep-08	0.1	991	0	9.3	100	0.093	0.009	1.000	0.100	2
000013 2000	**311	GE1/BC	10-Sep-08	0.2	1001	10	5.7	1.2	0.057	0.011	0.012	0.002	2
			17-Sep-08	0.1	1019	0.1	8.7	69.7	0.087	0.009	0.697	0.070	2

	(Max)	 (Max)	(Max)					
WORSE CASE CALCULATION ALL DATA	0.2	10.60	100.00	0.106	0.021	1.000	0.200	2

LABORATORY DATA

					FI	ELD RESUL	_TS		L	AB RESUL	TS	DIFFER	ENCE (FIELD%	- LAB%)
Investigation & Year of installation	Exploratory Hole	Response zone stratum	Date Monitored & Sampleed	Flow Rate (l/hr)	Atmos Pres (mb)	Min O2 (%) air	Max CO2 (% air)	Max CH4 (% air)	O2 (%) air	CO2 (% air)	CH4 (% air)	O2 (%) air	CO2 (% air)	CH4 (% air
Glovers 2008	WS3		10/09/2008	0.1	999	7.8	10.6	<0.1	9	8	< 0.05	-1.2	2.6	0
Glovers 2008	WS10		10/09/2008	0	999	20.1	<0.1	<0.1	21	0.4	0.1	-0.9	-0.3	0
Glovers 2008	WS11		10/09/2008	0.2	1001	10	5.7	1.2	11	4.2	0.1	-1	1.5	1.1
									A\	ERAGE DI	FEERENCE	-1.03	1 27	0.37

Appendix C: Waste Management

	Sample Location														Landfill accept	ptance criteria						
		WS1			WS2		WS3	WS4	WS5	w	S6	WS8	WS11	Bł	13		BH4		BH 5	BH7	Murphy	КТК
Depth Strata	1.00 MG	3.00 MG	5.00 MG	1.00 MG	3.00 MG	5.00 MG	4.00 SS	2.00 MG	2.00 MG	1.00 MG	4.00 MG	2.00 MG	2.00 SS	1.00 MG	2.0 MG	1.00 MG	5.0-5.3 MG	6.0-6.3 GC	2.00 MG	6.50 GC	(Inert WAC)	(Non-Haz WAC)
l eachate																						
Arsenic (as As)	0.09	0.08	< 0.01	0.10	0.12	< 0.01	0.02	0.14	< 0.01	0.04	0.04	0.14	0.01	2.43	1.51	0.02	0.73	0.29	< 0.01	< 0.01	0.5	2
Barium (as Ba)	2.49	2.36	2.50	2.05	2.14	2.47	3.22	1.80	2.53	1.81	3.00	2.31	2.71	7.14	8.86	2.33	3.2	3	2.42	3.15	20	100
Boron		0.82	1.32		0.75	1.32	-	0.21		0.45	1 71				0.27	0.67	<2	-2	0.65	-	20	
Cadmium (as Cd)	< 0.004	< 0.004	0.012	< 0.004	< 0.004	0.007	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	<0.022	<0.022	< 0.004	< 0.004	0.04	1
Total Chromium (as Cr)	0.02	0.03	0.03	0.02	0.04	0.02	0.02	0.08	0.04	< 0.01	< 0.01	0.02	< 0.01	3.74	2.15	0.04	< 0.1	< 0.1	< 0.01	< 0.01	0.5	10
Copper (as Cu)	0.36	0.53	0.32	0.22	0.28	0.28	0.57	0.34	0.41	1.12	0.50	0.50	0.38	2.37	0.40	0.26	0.27	0.57	0.38	0.34	2	50
Mercury (as Hg)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.001	0.002	< 0.0005	< 0.0005	0.01	0.2
Molybdenum (as Mo)	0.12	0.23	0.37	0.33	0.18	0.29	0.39	0.03	0.32	0.06	0.64	0.26	0.48	0.06	0.04	0.13	4.5	2.4	0.17	0.11	0.5	10
Nickel (as Ni)	< 0.01	< 0.01	0.08	< 0.01	< 0.01	0.03	0.04	0.17	0.12	0.08	0.11	< 0.01	0.13	3.75	3.39	<0.01	0.39	0.87	0.06	0.14	0.4	10
Lead (as Pb)	< 0.01	< 0.01	0.07	< 0.01	< 0.01	0.01	< 0.01	0.04	0.03	0.06	0.06	< 0.01	0.03	0.05	0.03	< 0.01	0.17	0.04	0.01	0.01	0.5	10
Antimony (as Cb)	0.07	0.05	0.03	0.04	0.04	0.04	0.06	0.07	0.02	0.04	0.11	0.09	0.13	0.07	0.04	0.03	1.3	< 0.075	0.01	0.04	0.06	
Selenium (as Se)	0.04	0.02	< 0.01	0.04	0.02	0.01	0.03	<0.01	< 0.01	<0.01	< 0.01	0.03	< 0.01	0.67	0.53	0.02	0.5	0.5	< 0.01	0.19	0.1	0.5
Zinc (as Zn)	0.15	0.17	1.33	0.04	0.11	0.96	0.85	0.17	0.44	0.28	0.39	0.09	0.73	0.83	0.49	0.07	< 0.5	< 0.5	0.48	0.19	4	50
Chloride	37	24	-	23	22	-	44	12	20	14	22	33	35	83	20	32	-	-	37	823	800	15000
Fluoride	20	7	-	12	9	-	7	6	2	8	3	9	3	5	2	5	-	-	3	4	10	150
Sulphate	54	108	-	50	110	-	2302	42	4278	53	409	184	721	130	241	425	-	-	4668	335	1000	20000
Phenol index	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	See Attached	See Attached	<0.1	-	-	<0.1	<0.1	1	
Dissolved Organic Carbon (DOC)	31	<20	-	20	21	-	30	<20	<20	<20	74	35	80	<20	27	<20	-	-	<20	<20	500	800
Total Dissolved Solids (TDS)	1040	1140	-	980	980	-	4580	940	6460	1060	1200	1400	3060	1220	1260	1260	-	-	5900	2040	4000	60000
Solid																						
Total Organic Carbon (TOC)	7.6	8.3	-	5.4	11.2	-	1.7	3.6	5.3	7.5	1.6	8.3	2.2	1.1	1.5	7.6	-	-	3.1	0.5	30,000	
BTEX	< 0.04	< 0.04	-	< 0.04	< 0.04	-	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.33	< 0.04	< 0.04	< 0.04	-	-	< 0.04	< 0.04	6	
PCB (7 congeners)	< 0.001	-	-	< 0.001	-	-	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	-	-	-	< 0.001	1	
Mineral Oil (C10-C40)	<1	-	-	<1	-	-	<1	-	<1	-	<1	<1	217	-	<1	-	-	-	-	<1	500	
Total 17 PAH	77.419	-	6.812	40.825	-	3.513	22.576	-	4.368	-	2.508	3.629	17.294	0.315	-	-	-	-	-	< 0.001	100	
Total PAH Dutch 10	60	-	-	38.7	-	-	17.5	-	4.6	-	2	2.9	13	0.25	-	-	-	-	-	-		40
DRO	271			60			111		<1		49	108	1086	<1						<1		1000

all results in mg/kg

MG - Made Ground

SS -Sandy Silt (with sea shells) GR - Gravel

BC - Gravelley Clay

Sarah Bear Buro Happold Limited Camden Mill Lower Bristol Road Bath BA2 3DQ UK

Telephone: +44 (0)1225 320600 Facsimile: +44 (0)870 787 4148

Email: sarah.bear@burohappold.com

Appendix B Nearby Site Investigations Log

Overview Map for GSI Report 856: Apartments Oriel Street Lower, Dublin 1. Points Observed: 2

Apartments

Oriel Street Lower, Dublin 1.

Borehole List:

Borehole	Name	Depth	DTB	ODMALIN	Easting	Northing	Description
62075	1	4.5		1.9	316944	234856	Cable Percussion (Shell and Auger)
62076	2	5		1.9	316978	234892	Cable Percussion (Shell and Auger)

Apartments

LAYERS FOR BOREHOLE 62075 (Company Name: 1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6207501	0	1				Fill - Made Ground	Fill - Made Ground
6207502	1	2	Soft	Black	Very Silty	Clay	Clay
6207503	2	4.5			Fine to Coarse	Gravel	Gravel
					Sandy		

Apartments

LAYERS FOR BOREHOLE 62076 (Company Name: 2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6207601	0	1				Fill - Made Ground	Fill - Made Ground
6207602	1	2.2	Soft	Black	Very Silty	Clay	Clay
6207603	2.2	5			Fine to Coarse	Gravel	Gravel

Apartments

TESTS FOR LAYER 6207501 IN BOREHOLE 62075 (Company Name: 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
6	.5	LABSOIL	Sulphate Content - SO(3)	0.07	%Soil
			%		
7	.5	LABSOIL	pH value	7.6	
7	.5	LABSOIL	pH value	7.6	

Apartments

TESTS FOR LAYER 6207502 IN BOREHOLE 62075 (Company Name: 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1	FIELD	Standard Penetration Test	3	NBLOW
9		LABSOIL	pH value	7.5	
9		LABSOIL	pH value	7.5	

Apartments

TESTS FOR LAYER 6207503 IN BOREHOLE 62075 (Company Name: 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	2	FIELD	Standard Penetration Test	34	NBLOW
3	3	FIELD	Standard Penetration Test	30	NBLOW
4	4	FIELD	Standard Penetration Test	33	NBLOW
5	4.5	FIELD	Standard Penetration Test	31	NBLOW
8		LABWAT	Sulphate content	12.2	ррм
		ER			

Apartments

TESTS FOR LAYER 6207602 IN BOREHOLE 62076 (Company Name: 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1	FIELD	Standard Penetration Test	5	NBLOW

Apartments

TESTS FOR LAYER 6207603 IN BOREHOLE 62076 (Company Name: 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
3	3	FIELD	Standard Penetration Test	25	NBLOW
4	4	FIELD	Standard Penetration Test	37	NBLOW
5	5	FIELD	Standard Penetration Test	36	NBLOW

Overview Map for GSI Report 2489: New Hotel Development Custom House Plaza, Sherriff Street, Dublin 1 Points Observed: 6

New Hotel Development

Custom House Plaza, Sherriff Street, Dublin 1

Borehole List:

Borehole	Name	Depth	DTB	ODMALIN	Easting	Northing	Description
87864	Borehole No. 1	9.5		3.29	316674	234870	Cable Percussion (Shell and Auger)
87865	Borehole No. 2	10		3.29	316690	234884	Cable Percussion (Shell and Auger)
87866	Borehole No. 3	9.4		3.29	316825	234874	Cable Percussion (Shell and Auger)
87867	Borehole No. 4	10		3.29	316852	234873	Cable Percussion (Shell and Auger)
87868	Borehole No. 5	8.5		3.29	316824	234856	Cable Percussion (Shell and Auger)
87869	Borehole No. 6	8		3.29	316852	234854	Cable Percussion (Shell and Auger)

New Hotel Development

LAYERS FOR BOREHOLE 87864 (Company Name: Borehole No. 1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
8786401	0	.3				Fill - Made Ground	Fill - Made Ground
8786402	.3	2.2		Red Brown	Sandy Clayey	Gravel And Cobbles	Gravel And Cobbles
8786403	2.2	3.3		Grey	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786404	3.3	6.6		Grey	Fine to Coarse	Gravel	Gravel
					Sandy		
8786405	6.6	9.5	Very Stiff to	Grey Black	Very Gravelly Silty	Clay, Cobbles And	Clay, Cobbles And
			Hard			Boulders	Boulders

New Hotel Development

LAYERS FOR BOREHOLE 87865 (Company Name: Borehole No. 2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
8786501	0	.3				Fill - Made Ground	Fill - Made Ground
8786502	.3	1.8		Red Brown	Sandy Clayey	Fill - Made Ground	Fill - Made Ground
8786503	1.8	2.4	Soft	Grey Black	Silty Gravelly	Clay	Clay
8786504	2.4	4		Grey	Fine to Coarse	Clay	Clay
					Sandy		
8786505	4	7.7		Brown	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786506	7.7	10	Very Stiff to	Grey Black	Very Gravelly Silty	Clay, Cobbles And	Clay, Cobbles And
			Hard			Boulders	Boulders

New Hotel Development

LAYERS FOR BOREHOLE 87866 (Company Name: Borehole No. 3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
8786601	0	.3				Fill - Made Ground	Fill - Made Ground
8786602	.3	2.4		Red Brown	Fine to Coarse	Fill - Made Ground	Fill - Made Ground
					Sandy		
8786603	2.4	2.9	Soft	Grey Black	Silty Gravelly	Clay	Clay
8786604	2.9	4.4		Grey	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786605	4.4	6.2		Brown	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786606	6.2	7.7		Grey Black	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786607	7.7	9.4	Very Stiff to	Grey Black	Very Gravelly Silty	Clay, Cobbles And	Clay, Cobbles And
			Hard			Boulders	Boulders

New Hotel Development

LAYERS FOR BOREHOLE 87867 (Company Name: Borehole No. 4)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
8786701	0	.3				Fill - Made Ground	Fill - Made Ground
8786702	.3	2.4		Black Brown	Fine to Coarse	Fill - Made Ground	Fill - Made Ground
					Sandy		
8786703	2.4	3.1	Soft	Grey Brown	Silty Gravelly	Clay	Clay
8786704	3.1	4.6		Grey	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786705	4.6	8.2	Very Stiff to	Grey Black	Very Gravelly Silty	Clay, Cobbles And	Clay, Cobbles And
			Hard			Boulders	Boulders
8786706	8.2	10		Grey	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders

New Hotel Development

LAYERS FOR BOREHOLE 87868 (Company Name: Borehole No. 5)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
8786801	0	.3				Fill - Made Ground	Fill - Made Ground
8786802	.3	2.2		Black Brown	Fine to Coarse	Fill - Made Ground	Fill - Made Ground
					Sandy		
8786803	2.2	2.4	Soft	Grey Brown	Silty	Clay	Clay
8786804	2.4	4.7		Grey	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786805	4.7	8.5	Very Stiff to	Grey Black	Very Gravelly Silty	Clay, Cobbles And	Clay, Cobbles And
			Hard			Boulders	Boulders

New Hotel Development

LAYERS FOR BOREHOLE 87869 (Company Name: Borehole No. 6)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
8786901	0	.4				Fill - Made Ground	Fill - Made Ground
8786902	.4	2.4		Black	Fine to Coarse	Fill - Made Ground	Fill - Made Ground
					Sandy		
8786903	2.4	5.1		Grey	Fine to Coarse	Gravel, Cobbles	Gravel, Cobbles And
					Sandy	And Boulders	Boulders
8786904	5.1	8	Very Stiff to	Grey Black	Very Gravelly Silty	Clay, Cobbles And	Clay, Cobbles And
			Hard			Boulders	Boulders

New Hotel Development

TESTS FOR LAYER 8786402 IN BOREHOLE 87864 (Company Name: Borehole No. 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.5	FIELD	Standard Penetration Test	28	NBLOW
7	1.5	LABSOIL	Sulphate Content - SO(3)	0.12	%Soil
			%		
8	1.5	LABSOIL	pH value	8	
8	1.5	LABSOIL	pH value	8	
9	7	LABSOIL	Particle Size Distribution -	31.2	%pass
			Coarse Sand (2.00mm)		
10	7	LABSOIL	Particle Size Distribution -	20.2	%pass
			Medium Sand (0.60mm)		

New Hotel Development

TESTS FOR LAYER 8786403 IN BOREHOLE 87864 (Company Name: Borehole No. 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	34	NBLOW

New Hotel Development

TESTS FOR LAYER 8786404 IN BOREHOLE 87864 (Company Name: Borehole No. 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
3	4.5	FIELD	Standard Penetration Test	34	NBLOW
4	6	FIELD	Standard Penetration Test	35	NBLOW
13	4	LABSOIL	Particle Size Distribution -	15	%pass
			Coarse Sand (2.00mm)		
14	4	LABSOIL	Particle Size Distribution -	4.4	%pass
			Medium Sand (0.60mm)		
15	4	LABSOIL	Particle Size Distribution - Fine	2.6	%pass
			Sand (0.20mm)		
16	4	LABSOIL	Particle Size Distribution - Silt	2.5	%pass
			(0.06mm)		

New Hotel Development

TESTS FOR LAYER 8786405 IN BOREHOLE 87864 (Company Name: Borehole No. 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
5	7.5	FIELD	Standard Penetration Test	43	NBLOW
6	9	FIELD	Standard Penetration Test	55	NBLOW
11	7	LABSOIL	Particle Size Distribution - Fine	14	%pass
			Sand (0.20mm)		
12	7	LABSOIL	Particle Size Distribution - Silt	12.2	%pass
			(0.06mm)		

New Hotel Development

TESTS FOR LAYER 8786502 IN BOREHOLE 87865 (Company Name: Borehole No. 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.5	FIELD	Standard Penetration Test	25	NBLOW

New Hotel Development

TESTS FOR LAYER 8786503 IN BOREHOLE 87865 (Company Name: Borehole No. 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
8	2	LABSOIL	Particle Size Distribution -	25.7	%pass
			Coarse Sand (2.00mm)		
9	2	LABSOIL	Particle Size Distribution -	5.1	%pass
			Medium Sand (0.60mm)		
10	2	LABSOIL	Particle Size Distribution - Fine	2.3	%pass
			Sand (0.20mm)		
11	2	LABSOIL	Particle Size Distribution - Silt	2.1	%pass
			(0.06mm)		
New Hotel Development

TESTS FOR LAYER 8786504 IN BOREHOLE 87865 (Company Name: Borehole No. 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	39	NBLOW

New Hotel Development

TESTS FOR LAYER 8786505 IN BOREHOLE 87865 (Company Name: Borehole No. 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
3	4.5	FIELD	Standard Penetration Test	39	NBLOW
4	6	FIELD	Standard Penetration Test	29	NBLOW
5	7.5	FIELD	Standard Penetration Test	52	NBLOW
12	7	LABSOIL	Particle Size Distribution -	26.4	%pass
			Coarse Sand (2.00mm)		
13	7	LABSOIL	Particle Size Distribution -	12.6	%pass
			Medium Sand (0.60mm)		
14	7	LABSOIL	Particle Size Distribution - Fine	5	%pass
			Sand (0.20mm)		
15	7	LABSOIL	Particle Size Distribution - Silt	2.5	%pass
			(0.06mm)		

New Hotel Development

TESTS FOR LAYER 8786506 IN BOREHOLE 87865 (Company Name: Borehole No. 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
6	9	FIELD	Standard Penetration Test	54	NBLOW
7	10	FIELD	Standard Penetration Test	0	NBLOW

New Hotel Development

TESTS FOR LAYER 8786602 IN BOREHOLE 87866 (Company Name: Borehole No. 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.5	FIELD	Standard Penetration Test	27	NBLOW
8	2	LABSOIL	Sulphate Content - SO(3)	0.08	%Soil
			%		
9	2	LABSOIL	pH value	8	
9	2	LABSOIL	pH value	8	

New Hotel Development

TESTS FOR LAYER 8786604 IN BOREHOLE 87866 (Company Name: Borehole No. 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	35	NBLOW
10	3.3	LABSOIL	Particle Size Distribution -	37.4	%pass
			Coarse Sand (2.00mm)		
11	3.3	LABSOIL	Particle Size Distribution -	10.2	%pass
			Medium Sand (0.60mm)		
12	3.3	LABSOIL	Particle Size Distribution - Fine	5.5	%pass
			Sand (0.20mm)		
13	3.3	LABSOIL	Particle Size Distribution - Silt	3.2	%pass
			(0.06mm)		

New Hotel Development

TESTS FOR LAYER 8786605 IN BOREHOLE 87866 (Company Name: Borehole No. 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
3	4.5	FIELD	Standard Penetration Test	39	NBLOW
4	6	FIELD	Standard Penetration Test	34	NBLOW

New Hotel Development

TESTS FOR LAYER 8786606 IN BOREHOLE 87866 (Company Name: Borehole No. 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
5	7.5	FIELD	Standard Penetration Test	41	NBLOW

New Hotel Development

TESTS FOR LAYER 8786607 IN BOREHOLE 87866 (Company Name: Borehole No. 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
6	9	FIELD	Standard Penetration Test	25	NBLOW
7	9.4	FIELD	Standard Penetration Test	0	NBLOW

New Hotel Development

TESTS FOR LAYER 8786702 IN BOREHOLE 87867 (Company Name: Borehole No. 4)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.5	FIELD	Standard Penetration Test	11	NBLOW
7	1.5	LABSOIL	Sulphate Content - SO(3)	0.14	%Soil
			%		
8	1.5	LABSOIL	pH value	8	
8	1.5	LABSOIL	pH value	8	

New Hotel Development

TESTS FOR LAYER 8786703 IN BOREHOLE 87867 (Company Name: Borehole No. 4)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	31	NBLOW

New Hotel Development

TESTS FOR LAYER 8786704 IN BOREHOLE 87867 (Company Name: Borehole No. 4)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
3	4.5	FIELD	Standard Penetration Test	30	NBLOW
9	4	LABWAT ER	Sulphate content	30	ррм
10	4	LABWAT ER	pH value	7.5	
10	4	LABWAT ER	pH value	7.5	

New Hotel Development

TESTS FOR LAYER 8786705 IN BOREHOLE 87867 (Company Name: Borehole No. 4)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
4	6	FIELD	Standard Penetration Test	48	NBLOW
5	7.5	FIELD	Standard Penetration Test	13	NBLOW

New Hotel Development

TESTS FOR LAYER 8786706 IN BOREHOLE 87867 (Company Name: Borehole No. 4)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
6	10	FIELD	Standard Penetration Test	0	NBLOW

New Hotel Development

TESTS FOR LAYER 8786802 IN BOREHOLE 87868 (Company Name: Borehole No. 5)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.5	FIELD	Standard Penetration Test	17	NBLOW

New Hotel Development

TESTS FOR LAYER 8786804 IN BOREHOLE 87868 (Company Name: Borehole No. 5)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	16	NBLOW
3	4.5	FIELD	Standard Penetration Test	26	NBLOW
7	3	LABSOIL	Particle Size Distribution -	11.7	%pass
			Coarse Sand (2.00mm)		
8	3	LABSOIL	Particle Size Distribution -	4.8	%pass
			Medium Sand (0.60mm)		
9	3	LABSOIL	Particle Size Distribution - Fine	2.6	%pass
			Sand (0.20mm)		
10	3	LABSOIL	Particle Size Distribution - Silt	2	%pass
			(0.06mm)		

New Hotel Development

TESTS FOR LAYER 8786805 IN BOREHOLE 87868 (Company Name: Borehole No. 5)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
4	6	FIELD	Standard Penetration Test	46	NBLOW
5	7.5	FIELD	Standard Penetration Test	47	NBLOW
6	8.5	FIELD	Standard Penetration Test	0	NBLOW
11	6	LABSOIL	Liquid Limit	25	%
12	6	LABSOIL	Plastic Limit	14	%
13	6	LABSOIL	Plasticity Index	11	%
14	6	LABSOIL	Moisture Content	9.17	%

New Hotel Development

TESTS FOR LAYER 8786902 IN BOREHOLE 87869 (Company Name: Borehole No. 6)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.5	FIELD	Standard Penetration Test	16	NBLOW

New Hotel Development

TESTS FOR LAYER 8786903 IN BOREHOLE 87869 (Company Name: Borehole No. 6)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	26	NBLOW
3	4.5	FIELD	Standard Penetration Test	37	NBLOW

New Hotel Development

TESTS FOR LAYER 8786904 IN BOREHOLE 87869 (Company Name: Borehole No. 6)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
4	6	FIELD	Standard Penetration Test	42	NBLOW
5	7.5	FIELD	Standard Penetration Test	18	NBLOW

Overview Map for GSI Report 3464: Commercial Development Connolly Station, Amiens Street, Dublin 1 Points Observed: 18

Commercial Development

Connolly Station, Amiens Street, Dublin 1

Borehole List:

Borehole	Name	Depth	DTB	ODMALIN	Easting	Northing	Description
107704	1	11.3		1.54	316650	234891	Cable Percussion (Shell and Auger)
107705	2	12.5		1.52	316642	234883	Cable Percussion (Shell and Auger)
107706	3	10		1.64	316675	234916	Cable Percussion (Shell and Auger)
107707	4	12.5		1.9	316698	234932	Cable Percussion (Shell and Auger)
107708	5	12.4		1.51	316688	234910	Cable Percussion (Shell and Auger)
107709	6	12.5		1.55	316666	234890	Cable Percussion (Shell and Auger)
107710	RC1	2.7		1.55	316667	234887	Rotary Core Drilling
107711	RC2	2.7		1.55	316663	234883	Rotary Core Drilling
107712	RC3	3.1		1.57	316660	234880	Rotary Core Drilling
107713	RC4	5		1.57	316657	234878	Rotary Core Drilling
107714	TP1	1		1.55	316661	234893	Trial (or Observation) Pit
107715	TP2	1.4		1.55	316657	234888	Trial (or Observation) Pit
107716	TP5	1		1.55	316664	234901	Trial (or Observation) Pit
107717	TP7	1		1.7	316685	234919	Trial (or Observation) Pit
107718	TP8	1.7		1.7	316680	234914	Trial (or Observation) Pit
107719	TP9	1.7		1.8	316696	234923	Trial (or Observation) Pit
107720	TP10	1.2		1.7	316711	234931	Trial (or Observation) Pit
107721	TP11	1.6		1.39	316642	234870	Trial (or Observation) Pit

Commercial Development

LAYERS FOR BOREHOLE 107704 (Company Name: 1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077040 1	0	1.6				Fill - Made Ground	Fill - Made Ground
1077040 2	1.6	3	Compact		Fine to Coarse	Gravel	Gravel
1077040 3	3	6	Compact	Brown	Sandy	Sand And Gravel	Sand And Gravel
1077040 4	6	7.1	Compact	Brown	Medium to Coarse	Sand	Sand
1077040 5	7.1	9	Compact		Fine to Coarse	Sand	Sand
1077040 6	9	11.3	Compact		Fine to Coarse Sandy	Gravel	Gravel

Commercial Development

LAYERS FOR BOREHOLE 107705 (Company Name: 2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077050 1	0	1.6				Fill - Made Ground	Fill - Made Ground
1077050 2	1.6	2.9	Compact		Fine to Coarse	Gravel	Gravel
1077050 3	2.9	6.1	Compact	Brown Grey	Fine to Coarse Sandy	Gravel	Gravel
1077050 4	6.1	9.8	Compact	Brown Grey	Gravelly	Sand	Sand
1077050 5	9.8	12.5	Compact		Coarse Sandy	Gravel	Gravel

Commercial Development

LAYERS FOR BOREHOLE 107706 (Company Name: 3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077060	0	1.6				Fill - Made Ground	Fill - Made Ground
1							
1077060	1.6	3.5	Compact		Fine to Coarse	Gravel	Gravel
2					Sandy		
1077060	3.5	6.6	Compact		Fine to Coarse	Gravel	Gravel
3					Sandy		
1077060	6.6	6.8		Grey	Silty	Sand	Sand
4							
1077060	6.8	10	Compact		Fine to Coarse	Gravel	Gravel
5					Sandy		

Commercial Development

LAYERS FOR BOREHOLE 107707 (Company Name: 4)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077070	0	1.6				Fill - Made Ground	Fill - Made Ground
1							
1077070	1.6	12.5	Compact		Fine to Coarse	Gravel	Gravel
2					Sandy		

Commercial Development

LAYERS FOR BOREHOLE 107708 (Company Name: 5)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077080	0	1.75				Fill - Made Ground	Fill - Made Ground
1							
1077080	1.75	6.3	Compact		Fine to Coarse	Gravel	Gravel
2					Sandy		
1077080	6.3	7.8	Compact		Medium Gravelly	Sand	Sand
3							
1077080	7.8	12.4	Compact		Fine to Coarse	Gravel	Gravel
4					Sandy		

Commercial Development

LAYERS FOR BOREHOLE 107709 (Company Name: 6)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077090	0	1.7				Fill - Made Ground	Fill - Made Ground
1							
1077090	1.7	12.5	Compact		Fine to Coarse	Gravel	Gravel
2					Sandy		

Commercial Development

LAYERS FOR BOREHOLE 107710 (Company Name: RC1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077100	0	.9				Fill - Made Ground	Fill - Made Ground
1							
1077100	.9	1			Fine to Medium	Gravel	Gravel
2							
1077100	1	2.2				Fill - Made Ground	Fill - Made Ground
3							
1077100	2.2	2.7				Fill - Made Ground	Fill - Made Ground
4							

Commercial Development

LAYERS FOR BOREHOLE 107711 (Company Name: RC2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077110	0	.09				Fill - Made Ground	Fill - Made Ground
1							
1077110	.09	1.1			Sandy	Gravel	Gravel
2							
1077110	1.1	1.3				Fill - Made Ground	Fill - Made Ground
3							
1077110	1.3	2.7				Fill - Made Ground	Fill - Made Ground
4							

Commercial Development

LAYERS FOR BOREHOLE 107712 (Company Name: RC3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077120	0	.1				Fill - Made Ground	Fill - Made Ground
1							
1077120	.1	1.22			Sandy	Gravel	Gravel
2							
1077120	1.22	1.66				Fill - Made Ground	Fill - Made Ground
3							
1077120	1.66	2.4				Fill - Made Ground	Fill - Made Ground
4							
1077120	2.4	3.1				Fill - Made Ground	Fill - Made Ground
5							

Commercial Development

LAYERS FOR BOREHOLE 107713 (Company Name: RC4)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077130	0	.09				Fill - Made Ground	Fill - Made Ground
1							
1077130	.09	3			Sandy	Gravel	Gravel
2							
1077130	3	5				Fill - Made Ground	Fill - Made Ground
3							

Commercial Development

LAYERS FOR BOREHOLE 107714 (Company Name: TP1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077140	0	1				Fill - Made Ground	Fill - Made Ground
1							

Commercial Development

LAYERS FOR BOREHOLE 107715 (Company Name: TP2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077150	0	1.4				Fill - Made Ground	Fill - Made Ground
1							

Commercial Development

LAYERS FOR BOREHOLE 107716 (Company Name: TP5)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077160	0	1				Fill - Made Ground	Fill - Made Ground
1							
Commercial Development

LAYERS FOR BOREHOLE 107717 (Company Name: TP7)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077170	0	.09				Fill - Made Ground	Fill - Made Ground
1							
1077170	.09	1				Fill - Made Ground	Fill - Made Ground
2							

Commercial Development

LAYERS FOR BOREHOLE 107718 (Company Name: TP8)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077180	0	.11				Fill - Made Ground	Fill - Made Ground
1							
1077180	.11	1.5				Fill - Made Ground	Fill - Made Ground
2							
1077180	1.5	1.7				Fill - Made Ground	Fill - Made Ground
3							

Commercial Development

LAYERS FOR BOREHOLE 107719 (Company Name: TP9)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077190	0	.2				Fill - Made Ground	Fill - Made Ground
1							
1077190	.2	1.6				Fill - Made Ground	Fill - Made Ground
2							
1077190	1.6	1.7			Sandy	Gravel	Gravel
3							

Commercial Development

LAYERS FOR BOREHOLE 107720 (Company Name: TP10)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077200	0	.14				Fill - Made Ground	Fill - Made Ground
1							
1077200	.14	1.2				Fill - Made Ground	Fill - Made Ground
2							

Commercial Development

LAYERS FOR BOREHOLE 107721 (Company Name: TP11)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1077210	0	.09				Fill - Made Ground	Fill - Made Ground
1							
1077210	.09	1.4				Fill - Made Ground	Fill - Made Ground
2							
1077210	1.4	1.6				Gravel	Gravel
3							

Commercial Development

TESTS FOR LAYER 10770401 IN BOREHOLE 107704 (Company Name: 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.5	FIELD	Standard Penetration Test	38	NBLOW

Commercial Development

TESTS FOR LAYER 10770403 IN BOREHOLE 107704 (Company Name: 1)

TEST	ТОР	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	34	NBLOW
3	4.5	FIELD	Standard Penetration Test	34	NBLOW

Commercial Development

TESTS FOR LAYER 10770404 IN BOREHOLE 107704 (Company Name: 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
4	6	FIELD	Standard Penetration Test	30	NBLOW

Commercial Development

TESTS FOR LAYER 10770405 IN BOREHOLE 107704 (Company Name: 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
6	8	FIELD	Standard Penetration Test	28	NBLOW

Commercial Development

TESTS FOR LAYER 10770406 IN BOREHOLE 107704 (Company Name: 1)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
7	9.5	FIELD	Standard Penetration Test	67	NBLOW
8	11	FIELD	Standard Penetration Test	43	NBLOW

Commercial Development

TESTS FOR LAYER 10770502 IN BOREHOLE 107705 (Company Name: 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
10	2.8	LABSOIL	Particle Size Distribution - Silt	4.1	%pass
			(0.06mm)		
11	2.8	LABSOIL	Particle Size Distribution - Fine	7.1	%pass
			Sand (0.20mm)		
12	2.8	LABSOIL	Particle Size Distribution -	15.6	%pass
			Medium Sand (0.60mm)		
13	2.8	LABSOIL	Particle Size Distribution -	26.1	%pass
			Coarse Sand (2.00mm)		

Commercial Development

TESTS FOR LAYER 10770503 IN BOREHOLE 107705 (Company Name: 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	35	NBLOW
3	4.5	FIELD	Standard Penetration Test	41	NBLOW
14	6.1	LABSOIL	Particle Size Distribution - Silt	2.5	%pass
			(0.06mm)		
15	6.1	LABSOIL	Particle Size Distribution - Fine	3.6	%pass
			Sand (0.20mm)		
16	6.1	LABSOIL	Particle Size Distribution -	12.6	%pass
			Medium Sand (0.60mm)		
17	6.1	LABSOIL	Particle Size Distribution -	26.4	%pass
			Coarse Sand (2.00mm)		

Commercial Development

TESTS FOR LAYER 10770504 IN BOREHOLE 107705 (Company Name: 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
5	7	FIELD	Standard Penetration Test	21	NBLOW
6	8	FIELD	Standard Penetration Test	19	NBLOW
7	9	FIELD	Standard Penetration Test	34	NBLOW
18	9.8	LABSOIL	Particle Size Distribution - Silt (0.06mm)	2.7	%pass
19	9.8	LABSOIL	Particle Size Distribution - Fine Sand (0.20mm)	4.2	%pass
20	9.8	LABSOIL	Particle Size Distribution - Medium Sand (0.60mm)	11.5	%pass
21	9.8	LABSOIL	Particle Size Distribution - Coarse Sand (2.00mm)	23.8	%pass

Commercial Development

TESTS FOR LAYER 10770505 IN BOREHOLE 107705 (Company Name: 2)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
8	10.5	FIELD	Standard Penetration Test	57	NBLOW
9	12	FIELD	Standard Penetration Test	67	NBLOW

Commercial Development

TESTS FOR LAYER 10770602 IN BOREHOLE 107706 (Company Name: 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
1	1.6	FIELD	Standard Penetration Test	50	NBLOW
2	3	FIELD	Standard Penetration Test	37	NBLOW

Commercial Development

TESTS FOR LAYER 10770603 IN BOREHOLE 107706 (Company Name: 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
3	4.5	FIELD	Standard Penetration Test	29	NBLOW
4	6	FIELD	Standard Penetration Test	21	NBLOW

Commercial Development

TESTS FOR LAYER 10770605 IN BOREHOLE 107706 (Company Name: 3)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
5	7.5	FIELD	Standard Penetration Test	32	NBLOW
6	9	FIELD	Standard Penetration Test	37	NBLOW
7	10	FIELD	Standard Penetration Test	45	NBLOW

Commercial Development

TESTS FOR LAYER 10770702 IN BOREHOLE 107707 (Company Name: 4)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	34	NBLOW
3	4.5	FIELD	Standard Penetration Test	21	NBLOW
4	6	FIELD	Standard Penetration Test	27	NBLOW
5	7.5	FIELD	Standard Penetration Test	38	NBLOW
6	9	FIELD	Standard Penetration Test	56	NBLOW
7	10.5	FIELD	Standard Penetration Test	71	NBLOW
8	1.8	LABSOIL	Particle Size Distribution - Silt (0.06mm)	3.2	%pass
9	1.8	LABSOIL	Particle Size Distribution - Fine Sand (0.20mm)	5.00	%pass
10	1.8	LABSOIL	Particle Size Distribution - Medium Sand (0.60mm)	10.2	%pass
11	1.8	LABSOIL	Particle Size Distribution - Coarse Sand (2.00mm)	37.4	%pass
12	5	LABSOIL	Particle Size Distribution - Silt (0.06mm)	2.0	%pass
13	5	LABSOIL	Particle Size Distribution - Fine Sand (0.20mm)	2.2	%pass
14	5	LABSOIL	Particle Size Distribution - Medium Sand (0.60mm)	4.8	%pass
15	5	LABSOIL	Particle Size Distribution - Coarse Sand (2.00mm)	11.7	%pass
16	9	LABSOIL	Particle Size Distribution - Silt (0.06mm)	2.5	%pass
17	9	LABSOIL	Particle Size Distribution - Fine Sand (0.20mm)	2.5	%pass
18	9	LABSOIL	Particle Size Distribution - Medium Sand (0.60mm)	4.4	%pass

Commercial Development

TESTS FOR LAYER 10770802 IN BOREHOLE 107708 (Company Name: 5)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	36	NBLOW
3	4.5	FIELD	Standard Penetration Test	41	NBLOW
4	6	FIELD	Standard Penetration Test	26	NBLOW

Commercial Development

TESTS FOR LAYER 10770803 IN BOREHOLE 107708 (Company Name: 5)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
5	7.5	FIELD	Standard Penetration Test	21	NBLOW

Commercial Development

TESTS FOR LAYER 10770804 IN BOREHOLE 107708 (Company Name: 5)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
6	9	FIELD	Standard Penetration Test	37	NBLOW
7	10.5	FIELD	Standard Penetration Test	46	NBLOW
8	12	FIELD	Standard Penetration Test	58	NBLOW

Commercial Development

TESTS FOR LAYER 10770902 IN BOREHOLE 107709 (Company Name: 6)

TEST	TOP	CLASS	DESCRIPTION	RESULT	UNITS
2	3	FIELD	Standard Penetration Test	29	NBLOW
3	4.5	FIELD	Standard Penetration Test	37	NBLOW
4	6	FIELD	Standard Penetration Test	19	NBLOW
5	7.5	FIELD	Standard Penetration Test	28	NBLOW
6	9	FIELD	Standard Penetration Test	41	NBLOW
7	10.5	FIELD	Standard Penetration Test	53	NBLOW
8	12	FIELD	Standard Penetration Test	38	NBLOW

Overview Map for GSI Report 6012: Proposed Residential/Commercial Development Amiens Street, Dublin 1 Points Observed: 7

© OSi, No. EN 0047213

Proposed Residential/Commercial Development

Amiens Street, Dublin 1

Borehole List:

Borehole	Name	Depth	DTB ODMALIN	Easting	Northing	Description
138449	BH1	13.5	3	316692	235035	Cable Percussion (Shell and Auger)
138450	BH2	14	3	316688	235020	Cable Percussion (Shell and Auger)
138451	BH3	14	3	316677	235007	Cable Percussion (Shell and Auger)
138452	TP1	.7	3	316684	235003	Trial (or Observation) Pit
138453	TP2	1.9	3	316697	235011	Trial (or Observation) Pit
138454	TP3	3.4	3	316713	235021	Trial (or Observation) Pit
138455	TP4	2.9	3			Trial (or Observation) Pit

Proposed Residential/Commercial Development

LAYERS FOR BOREHOLE 138449 (Company Name: BH1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1384490	0	1				Fill - Made Ground	Fill - Made Ground
1							
1384490	1	2	Firm	Brown	Sandy Gravelly	Clay	Clay
2							
1384490	2	4.5	Medium		Coarse	Gravel	Gravel
3			Dense				
1384490	4.5	9.5	Loose	Black	Silty	Sand	Sand
4							
1384490	9.5	13.5	Dense		Coarse	Gravel	Gravel
5							

Proposed Residential/Commercial Development

LAYERS FOR BOREHOLE 138450 (Company Name: BH2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1384500 1	0	1.2				Fill - Made Ground	Fill - Made Ground
1384500 2	1.2	3.5	Medium Dense		Coarse	Gravel	Gravel
1384500 3	3.5	4.5	Loose		Fine to Coarse Sandy	Gravel	Gravel
1384500 4	4.5	9	Loose	Brown	Silty	Sand	Sand
1384500 5	9	14			Coarse	Gravel	Gravel
1384500 6	14	14.1				Boulders	Boulders

Proposed Residential/Commercial Development

LAYERS FOR BOREHOLE 138451 (Company Name: BH3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1384510 1	0	.2				Fill - Made Ground	Fill - Made Ground
1384510 2	.2	2				Fill - Made Ground	Fill - Made Ground
1384510 3	2	3	Firm	Brown	Sandy	Clay And Silt	Clay And Silt
1384510 4	3	5.5	Medium Dense		Fine to Coarse Sandy	Gravel	Gravel
1384510 5	5.5	7.5	Loose	Brown	Fine to Medium	Gravel	Gravel
1384510 6	7.5	8.5	Loose	Black	Fine to Medium	Sand	Sand
1384510 7	8.5	13.8		Grey	Fine to Coarse Sandy	Gravel	Gravel
1384510 8	13.8	14				Boulders	Boulders

Proposed Residential/Commercial Development

LAYERS FOR BOREHOLE 138452 (Company Name: TP1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1384520	0	.6				Fill - Made Ground	Fill - Made Ground
1							
1384520	.6	.7				Fill - Made Ground	Fill - Made Ground
2							

Proposed Residential/Commercial Development

LAYERS FOR BOREHOLE 138453 (Company Name: TP2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1384530	0	.2				Fill - Made Ground	Fill - Made Ground
1							
1384530	.2	.9				Fill - Made Ground	Fill - Made Ground
2							
1384530	.9	1.55				Fill - Made Ground	Fill - Made Ground
3							
1384530	1.55	1.9	Medium	Light Brown	Silty Sandy	Gravel	Gravel
4			Dense				

Proposed Residential/Commercial Development

LAYERS FOR BOREHOLE 138454 (Company Name: TP3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1384540	0	2				Fill - Made Ground	Fill - Made Ground
1							
1384540	2	3.2				Fill - Made Ground	Fill - Made Ground
2							
1384540	3.2	3.4		Light Brown	Slightly Silty	Gravel	Gravel
3							

Proposed Residential/Commercial Development

LAYERS FOR BOREHOLE 138455 (Company Name: TP4)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1384550	0	.4				Fill - Made Ground	Fill - Made Ground
1							
1384550	.4	1.6				Fill - Made Ground	Fill - Made Ground
2							
1384550	1.6	2.5				Fill - Made Ground	Fill - Made Ground
3							
1384550	2.5	2.9	Firm to Soft	Light Brown	Gravelly	Silt	Silt
4							

Overview Map for GSI Report 6349: Connolly Station Development Connolly Station, Dublin 1, Co. Dublin Points Observed: 4

Connolly Station Development

Connolly Station, Dublin 1, Co. Dublin

Borehole List:

Borehole	Name	Depth	DTB	ODMALIN	Easting	Northing	Description
141651	BH1	4		6	317084	235182	Cable Percussion (Shell and Auger)
141652	BH1A	11.5		6	317084	235181	Cable Percussion (Shell and Auger)
141653	BH2	10.5		6	317056	235205	Cable Percussion (Shell and Auger)
141654	BH3	11.5		6	317040	235198	Cable Percussion (Shell and Auger)

Connolly Station Development

LAYERS FOR BOREHOLE 141651 (Company Name: BH1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1416510	0	.8				Fill - Made Ground	Fill - Made Ground
1							
1416510	.8	2.2				Fill - Made Ground	Fill - Made Ground
2							
1416510	2.2	3.9				Fill - Made Ground	Fill - Made Ground
3							
1416510	3.9	4				Boulders	Boulders
4							

Connolly Station Development

LAYERS FOR BOREHOLE 141652 (Company Name: BH1A)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1416520	0	.9				Fill - Made Ground	Fill - Made Ground
1416520 2	.9	2.1				Fill - Made Ground	Fill - Made Ground
1416520 3	2.1	5.2				Fill - Made Ground	Fill - Made Ground
1416520 4	5.2	6.1				Fill - Made Ground	Fill - Made Ground
1416520 5	6.1	6.5		Brown	Clayey	Fill - Made Ground	Fill - Made Ground
1416520 6	6.5	8.1	Medium Dense		Sandy	Gravel	Gravel
1416520 7	8.1	11.5			Medium to Coarse	Gravel	Gravel

Connolly Station Development

LAYERS FOR BOREHOLE 141653 (Company Name: BH2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1416530 1	0	.5				Fill - Made Ground	Fill - Made Ground
1416530 2	.5	1.1				Fill - Made Ground	Fill - Made Ground
1416530 3	1.1	3				Fill - Made Ground	Fill - Made Ground
1416530 4	3	5.5				Fill - Made Ground	Fill - Made Ground
1416530 5	5.5	6.2				Fill - Made Ground	Fill - Made Ground
1416530 6	6.2	10.5	Dense		Fine to Coarse Sandy	Gravel	Gravel

Connolly Station Development

LAYERS FOR BOREHOLE 141654 (Company Name: BH3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
1416540	0	.1				Fill - Made Ground	Fill - Made Ground
1							
1416540	.1	4				Fill - Made Ground	Fill - Made Ground
2							
1416540	4	5.5				Fill - Made Ground	Fill - Made Ground
3							
1416540	5.5	6.5				Fill - Made Ground	Fill - Made Ground
4							
1416540	6.5	7				Fill - Made Ground	Fill - Made Ground
5							
1416540	7	7.6				Fill - Made Ground	Fill - Made Ground
6							
1416540	7.6	11.5	Dense		Medium to Coarse	Gravel	Gravel
7							

Appendix C HazWasteOnline (HWOL) assessment

Waste Classification Report

Job name								
B909 GQRA review 16.11.2018								
Description/Comments								
Samples taken by Glovers Ltd on behalf of Buro Happold in 2008 Site Investigations. Methodology used not known, i.e. whether the samples are spot, or interval samples.								
Project								
B909 Connolly Station Environmental								
Site								
Connolly Station Car Park								
Related Documents								
# Name	Description							
None								
Waste Stream Template								
EJEL Rilta								
Classified by								
Name: lain Williams Date: 16 Nov 2018 14:43 GMT Telephone: +353 1 868 2000	Company: OCSC 9 Prussia Street Dublin 7							

Report

Created by: Iain Williams Created date: 16 Nov 2018 14:43 GMT

Job summary

	-				
#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS1[1m]	1.00	Non Hazardous		3
2	WS1[3m]	3.00	Non Hazardous		5
3	WS1[5m]	5.00	Non Hazardous		8
4	WS2[1m]	1.00	Non Hazardous		10
5	WS2[3m]	3.00	Non Hazardous		12
6	WS2[5m]	5.00	Non Hazardous		15
7	WS3[0.5m]	0.50	Non Hazardous		17
8	WS3[4m]	4.00	Non Hazardous		19
9	WS4[0.5m]	0.50	Non Hazardous		22
10	WS4[2m]	2.00	Non Hazardous		25
11	WS5[0.5m]	0.50	Non Hazardous		27

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
12	WS5[2m]	2.00	Hazardous	HP 7, HP 14	29
13	WS5[5m]	5.00	Non Hazardous		32
14	WS6[1m]	1.00	Non Hazardous		34
15	WS6[4m]	4.00	Non Hazardous		36
16	WS7[1m]	1.00	Non Hazardous		39
17	WS7[3m]	3.00	Non Hazardous		41
18	WS7[5m]	5.00	Non Hazardous		44
19	WS8[2m]	2.00	Non Hazardous		46
20	WS9[0.5m]	0.50	Non Hazardous		49
21	WS9[1m]	1.00	Non Hazardous		51
22	WS11[0.5m]	0.50	Non Hazardous		53
23	WS11[2m]	2.00	Non Hazardous		55
24	WS11[3m]	3.00	Non Hazardous		58
25	WS12[0.5m]	0.50	Non Hazardous		60
26	WS12[1m]	1.00	Non Hazardous		62
27	BH1[2m]	2.00	Non Hazardous		65
28	BH3[2m]	2.0	Non Hazardous		67
29	BH3[0.5m]	0.50	Non Hazardous		69
30	BH3[1m]	1.00	Non Hazardous		71
31	BH4[1m]	1.00	Non Hazardous		73
32	BH4[5-5.3m]	5.0-5.3	Non Hazardous		75
33	BH4[6-6.3m]	6.0-6.3	Non Hazardous		77
34	BH4[7.2m]	7.20	Non Hazardous		79
35	BH5[2m]	2.00	Non Hazardous		81
36	BH6[1m]	1.00	Non Hazardous		84
37	BH6[2m]	2.00	Non Hazardous		86
38	BH7[0.5m]	0.5	Non Hazardous		88
39	BH7[3m]	3	Non Hazardous		90
40	BH7[6.5m]	6.50	Non Hazardous		91

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	94
Appendix B: Rationale for selection of metal species	95
Appendix C: Version	96

Classification of sample: WS1[1m]

Sample details

Sample Name:	LoW Code:	
WS1[1m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
24.6%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 24.6% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number	CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound co	onc.	Classification value	IC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	07.52.2	5	33 m	ng/kg	1.32	34.968	mg/kg	0.0035 %	≥	
2	4	cadmium { cadmium sulfide }		1	2 m	ng/kg	1.285	2.063	mg/kg	0.000161 %	√	
	æ	048-010-00-4 215-147-8 13	06-23-6									
3	~	029-016-00-6 215-269-1 13	17-38-0		95 m	ng/kg	1.252	95.44	mg/kg	0.00954 %	\checkmark	
4	4	chromium in chromium(III) compounds { oxide }	chromium(III)		32 m	ng/kg	1.462	37.536	mg/kg	0.00375 %	~	
5	4	215-160-9 [13 chromium in chromium(VI) compounds { oxide }	chromium(VI)		<0.1 m	ng/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	024-001-00-0 215-607-8 [1333-82-0] Iead { Isad compounds with the exception of those specified elsewhere in this Annex (worst case) }			650 m	ng/kg		521.669	mg/kg	0.0522 %	~	
		082-001-00-6						1				
7	~	080-010-00-X 231-299-8 74	87-94-7		<0.3 m	ng/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
	4	nickel { nickel dihydroxide }										
8		028-008-00-X 235-008-5 [1] 12 234-348-1 [2] 11	054-48-7 [1] 113-74-9 [2]		41 m	ng/kg	1.579	51.974	mg/kg	0.0052 %	~	
9	~	selenium { selenium compounds with the cadmium sulphoselenide and those speci in this Annex } 034-002-00-8	exception of ified elsewhere		<0.5 m	ng/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { zinc oxide }	14 12 2		<1 m	ng/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
	æ	boron { diboron trioxide: boric oxide }	14-13-2									
11	~	005-008-00-8 215-125-8 13	03-86-2		334 m	ng/kg	3.22	863.113	mg/kg	0.0863 %	\checkmark	
12		naphthalene	-20-3		0.51 m	ng/kg		0.409	mg/kg	0.0000409 %	\checkmark	
13	۲	acenaphthylene	200		0.566 m	ng/kg		0.454	mg/kg	0.0000454 %	\checkmark	
		205-917-1 20	0-90-0									

#			Determinand		o Note	User entered data		Conv. Factor	Conv. actor Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLF							МC	
14	8	acenaphthene		T		0.545	mg/kg		0.437	mg/kg	0.0000437 %	\checkmark	
			201-469-6	83-32-9	-								
15	۲	fluorene	201 605 5	06 72 7		0.827	mg/kg		0.664	mg/kg	0.0000664 %	\checkmark	
		phenanthrene	201-095-5	00-73-7	-								
16	۲	phenantinene	201-581-5	85-01-8		8.748	mg/kg		7.021	mg/kg	0.000702 %	\checkmark	
		anthracene	201 001 0										
11		204-371-1 120-12-7		1	1.899	mg/kg		1.524	mg/kg	0.000152 %	\checkmark		
18	8	fluoranthene				15 473	ma/ka		12 418	ma/ka	0 00124 %	/	
			205-912-4	206-44-0		10.470	iiig/kg		12.410	iiig/kg	0.00124 /0	×	
19	0	pyrene				12.491	mg/kg		10.025	mg/kg	0.001 %	\checkmark	
			204-927-3	129-00-0									
20		benzo[a]anthracene	9			7.249 n	mg/kg		5.818	mg/kg	0.000582 %	\checkmark	
		601-033-00-9	200-280-6	56-55-3	-								
21		601-048-00-0	205-023-1	218-01-9		4.508	mg/kg		3.618	mg/kg	0.000362 %	\checkmark	
		benzo[a]pyrene: be	nzoldeflchrvsene	210 01 3	\vdash								
22		601-032-00-3	200-028-5	50-32-8		3.134	mg/kg		2.515	mg/kg	0.000252 %	\checkmark	
00		indeno[123-cd]pyre	ne	1		2.055			0.474		0.000047.0/	,	
23			205-893-2	193-39-5		3.955	тg/кg		3.174	тg/кg	0.000317 %	\checkmark	
24		dibenz[a,h]anthrace	ene			3 28	ma/ka		2 632	ma/ka	0.000263 %	/	
27		601-041-00-2	200-181-8	53-70-3		0.20	iiig/kg		2.002	iiig/kg	0.000200 /0	×	
25	0	benzo[ghi]perylene				5.999	mg/kg		4.815	mg/kg	0.000481 %	\checkmark	
		205-883-8 191-24-2											
26	Θ	o coronene			1.036	mg/kg		0.831	mg/kg	0.0000831 %	\checkmark		
		benzo[b]fluoranthei	203-881-7	191-07-1									
27		601-034-00-4	205-911-9	205-99-2		7.205	mg/kg		5.783	mg/kg	0.000578 %	\checkmark	
		benzo[k]fluoranther	ne			7.005			5 700		0.000570.0/		
28		601-036-00-5	205-916-6	207-08-9		7.205	mg/кg		5.783	тg/кg	0.000578 %	\checkmark	
20		benzene		1		<0.01	ma/ka		<0.01	ma/ka	~0.00001 %		
23		601-020-00-8	200-753-7	71-43-2		<0.01	iiig/kg		<0.01	шу/ку	<0.000001 /8		LOD
30		toluene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
		xylene											
31		601-022-00-9	202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3]									
			215-535-7 [4]	1330-20-7 [4]	_								
32	Θ	ethylbenzene	000 040 4	400 44 4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
33		602-039-00-4	215-648-1	1336-36-3	{	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
	6	pH	2.3 0 10 1		\vdash				c -			$\left \right $	
34	34 PH		1	8.3	рН		8.3	рН	8.3 pH				
	æ	cvanides (ealte	of hydrogen cyanid	e with the	ſ								
35		exception of comple	ex cyanides such as	s ferrocyanides,			mg/kg	<mark>g</mark> 1.884	1.884 <4.71 mg/kg				
		ferricyanides and m	ercuric oxycyanide	and those		<2.5				mg/kg	′kg <0.000471 %		<lod< td=""></lod<>
		specified elsewhere	<pre>+ In this Annex }</pre>	1	{								
<u> </u>				1	1					Total:	0.168 %		

Kev

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><td>Below limit of detection</td></lod<>	Below limit of detection
CLD: Note 1	

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS1[3m]

Sample details

Sample Name:	LoW Code:	
WS1[3m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
25.2%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 25.2% Dry Weight Moisture Correction applied (MC)

#		Determinand	CAS Number	-P Note	User entered o	data	Conv. Factor	Compound o	onc.	Classification value	C Applied	Conc. Not Used
				C							ž	
1	44	arsenic { arsenic (noxide }	1227 52 2		26 r	ng/kg	1.32	27.419	mg/kg	0.00274 %	\checkmark	
		cadmium { cadmium sulfide }	1527-55-5	_						10		
2	**	048-010-00-4 215-147-8	1306-23-6	1	1 r	ng/kg	1.285	1.027	mg/kg	0.0000799 %	\checkmark	
-	æ	copper { copper(II) oxide }										
3	~	029-016-00-6 215-269-1	1317-38-0		134 r	ng/kg	1.252	133.976	mg/kg	0.0134 %	\checkmark	
4	4	chromium in chromium(III) compounds oxide }	{ • <mark>chromium(III)</mark>		44 r	ng/kg	1.462	51.365	mg/kg	0.00514 %	~	
		215-160-9	1308-38-9									
5	44	<pre>chromium in chromium(VI) compounds oxide }</pre>	{ chromium(VI)		<0.1 r	na/ka	1.923	<0.192	ma/ka	<0.0000192 %		<lod< th=""></lod<>
-		024-001-00-0 215-607-8	1333-82-0									
6	4	lead {	eption of those st case) }	1	364 r	ng/kg		290.735	mg/kg	0.0291 %	~	
		082-001-00-6										
7	4	mercury { mercury dichloride }			<0.3 r	ng/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8	7487-94-7									
8	4	nickel { nickel dihydroxide }		61	61 r	na/ka	1 579	9 76 956	ma/ka	0 0077 %	./	
		235-008-00-7 235-008-5 [1]	12054-48-7 [1] 11113-74-9 [2]						5. 5	0.0017 /0	ľ	
9	4	selenium { selenium compounds with th cadmium sulphoselenide and those spe in this Annex } 034-002-00-8	ne exception of ecified elsewhere		<0.5 r	ng/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
10	æ	zinc { zinc oxide }				0	4.045	4.045		0.000404.00		1.05
10	~	030-013-00-7 215-222-5	1314-13-2		<1 r	ng/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
11	æ	boron { diboron trioxide; boric oxide }			164	ma/ka	2 22	401 770	malka	0.0422.9/	,	
		005-008-00-8 215-125-8	1303-86-2		104 1	пу/ку	3.22	421.773	тту/ку	0.0422 %	V	
12		naphthalene			0.059 r	na/ka		0.0471	ma/ka	0.00000471 %	J	
		601-052-00-2 202-049-5	91-20-3								×.	
13	0	acenaphthylene			0.063 r	ng/kg		0.0503	mg/kg	0.00000503 %	\checkmark	
		205-917-1	208-96-8			0			2 0			

Image: second public line Im	#		Determinand CLP index number EC Number	CAS Number	LP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	1C Applied	Conc. Not Used
Image: constraint of the	14	8	acenaphthene		0	0.045	mg/kg		0.0359	mg/kg	0.00000359 %	≥	
16 Notement 0.034 mg/kg 0.02272 mg/kg 0.0000272 % / 18 Potensitivene 201-695-5 P6-73-7 0.038 mg/kg 0.0476 mg/kg 0.0000772 % / 18 Potensitivene 201-591-2 Potensitivene 0.038 mg/kg 0.00783 mg/kg 0.0000783 % / 18 Potensitivene 201-591-2 P06-84-0 0.669 mg/kg 0.0783 mg/kg 0.000031% / 18 Potense 201-591-2 P06-84-0 0.641 mg/kg 0.0351 mg/kg 0.000037% / 19 Potense 201-032-00-5 P05-923-4 P0.4427 mg/kg 0.03037 mg/kg 0.000037% / 20 benzo(d]antracene 201-032-00-5 P05-923-4 P0.4427 mg/kg 0.3057 mg/kg 0.000037% / 21 chonese P00-280-5 P0-32-8 P0.4427 mg/kg 0.3057 mg/kg 0.000037% /	-		201-469-6	83-32-9									
Image: Section of the sectin of the section of the section	15	۲	201-695-5	86-73-7		0.034	mg/kg		0.0272	mg/kg	0.00000272 %	\checkmark	
15 p01-581-5 p5-01-8 0.0586 mgkq 0.0783 mgkq 0.0000478 % V 17 a infracene j03-371-1 [20-127-7] 0.088 mgkq 0.0783 mgkq 0.0000783 % V 18 a infracene j05-5912-4 j005-440-0 0.6689 mgkq 0.044 mgkq 0.0000351 % V 18 a increation j03-300-5 j00-4927-3 [129-00-0 0.614 mgkq 0.0351 mgkq 0.0000397 % V 20 berzolajentrizene j00-320-6 j6-55-3 0.444 mgkq 0.331 mgkq 0.0000397 % V 21 chrysen j00-320-5 j00-320-6 j00-320-8 j00-320-9			phenanthrene	00101									
IT anthracene D04-371-1 120-12-7 0.088 mg/kg 0.0783 mg/kg 0.0000783 % v 18 Intractione D05-912-4 D06-44-0 D.6669 mg/kg D.0783 mg/kg D.0000783 % v 19 Pyrene D04-927-3 129-00-0 D.6141 mg/kg D.499 mg/kg D.0000511 % v 20 Derroz[a]phrne: D04-927-3 129-00-0 D.6141 mg/kg D.351 mg/kg D.0000511 % v 21 Chrysene D01-020-0 D5-922-4 D18-01-9 D.497 mg/kg D.387 mg/kg D.0000381 % v 22 Excollapyrene: D05-932-4 D18-01-9 D.497 mg/kg D.388 mg/kg D.0000181 % v 24 diberz(a]/partne: D05-932-2 193-39-5 D.242 mg/kg D.1193 mg/kg D.0000183 % v 25 Perzo(B/Ijuranthracene D0-242 mg/kg D.0269 mg/kg D.0000193 % v 26 berro(B/Ijuranthracene D05-932-1 D743 <td>16</td> <td>-</td> <td>201-581-5</td> <td>85-01-8</td> <td></td> <td>0.596</td> <td>mg/kg</td> <td></td> <td>0.476</td> <td>mg/kg</td> <td>0.0000476 %</td> <td>\checkmark</td> <td></td>	16	-	201-581-5	85-01-8		0.596	mg/kg		0.476	mg/kg	0.0000476 %	\checkmark	
Image: Section of the sectin the section of the section of	17		anthracene			0.098	ma/ka		0.0783	ma/ka	0 0000783 %	,	
18 Intorantheme Intorantheme Intorantheme 0.669 mg/kp 0.534 mg/kp 0.0000534 % ✓ 19 Pyrene 204-927-3 [23-00-0 0.614 mg/kp 0.44 mg/kp 0.0000351 % ✓ 20 berzo[a]parthracene 56-55-3 0.44 mg/kp 0.351 mg/kp 0.0000361 % ✓ 21 chrysene 50-028-0 56-55-3 0.44 mg/kp 0.397 mg/kp 0.0000361 % ✓ 22 berzo[a]pr/mer, berzo[de]chrysene 50-32-8 0.385 mg/kp 0.308 mg/kp 0.0000368 % ✓ 23 indeno[123-cd]pyrene, berzo[de]chrysene 0.224 mg/kp 0.216 mg/kp 0.0000216 % ✓ 24 diberzo[a)hanthracene 50-70-3 0.242 mg/kp 0.268 mg/kp 0.0000216 % ✓ 26 berzo[h]luorantheme 50-591-2 0.743 mg/kp 0.593 mg/kp 0.0000269 % ✓ 27 berzo[h]			204-371-1	120-12-7		0.000	ing/kg		0.0700	iiig/itg	0.00000700 //	×	
Image: Point of the second s	18	0	fluoranthene			0.669	mg/kg		0.534	mg/kg	0.0000534 %	\checkmark	
19 Pyrene 204-927-3 129-00-0 0.614 mg/kg 0.49 mg/kg 0.000049 % ✓ 20 benzolalanthracene 0.014 mg/kg 0.351 mg/kg 0.000037 % ✓ 21 chrysene 0.025-923-4 218-01-9 0.497 mg/kg 0.397 mg/kg 0.0000397 % ✓ 22 benzolalphrane, benzolePhrysene 0.025-923-4 218-01-9 0.497 mg/kg 0.308 mg/kg 0.0000397 % ✓ 23 indeno(123-cd)prene, benzolePhrysene 0.3285 mg/kg 0.308 mg/kg 0.0000216 % ✓ 24 dbenzolalphanthracene 0.0242 mg/kg 0.193 mg/kg 0.0000269 % ✓ 25 benzolfpluranthracene 0.037 mg/kg 0.269 mg/kg 0.0000269 % ✓ 26 benzolfpluranthracene 0.0337 mg/kg 0.593 mg/kg 0.0000593 % ✓ 27 benzolfpluranthrace 0.00-753.7 71-43-2 -0.01 mg/kg -0.01 mg/kg -0.00001 % <td00< td=""> 2</td00<>			205-912-4	206-44-0									
Long (2000) Description (2000) <thdescription (2000)<="" th=""> Description (20</thdescription>	19	۲	pyrene	120.00.0		0.614	mg/kg		0.49	mg/kg	0.000049 %	\checkmark	
20 Image: Section of the sectin of the section of the section of the section of the section of			benzo[a]anthracene	129-00-0									
21 chrysere 205-923-4 ≥18-01-9 0.497 mg/kg 0.397 mg/kg 0.0000397 % ✓ 22 benzolghyrene: benzoldel[chrysene 0.385 mg/kg 0.308 mg/kg 0.0000397 % ✓ 23 inden0[122-c0]pyrene 100-028-5 50-32-8 0.385 mg/kg 0.216 mg/kg 0.0000216 % ✓ 24 dibenz(a,h)anthracene [193-39-5 0.242 mg/kg 0.193 mg/kg 0.0000193 % ✓ 25 benzolghiper/sene 200-181-8 53-70-3 0.242 mg/kg 0.269 mg/kg 0.0000193 % ✓ 26 benzolghiper/sene 205-883-8 [191-24-2 0.337 mg/kg 0.269 mg/kg 0.0000593 % ✓ 27 benzolghiper/sene 205-91-9 207-08-9 0.743 mg/kg 0.01 mg/kg 0.0000593 % ✓ 28 benzoleh 100-05-75-7 [71-43-2 <0.01	20		601-033-00-9 200-280-6	56-55-3		0.44	mg/kg		0.351	mg/kg	0.0000351 %	\checkmark	
21 601-048-00-0 205-923-4 218-01-9 0.497 migkg 0.397 migkg 0.0000387 % ✓ 22 benzo[a]pyrene: benzo[del[chrysene 0.385 mg/kg 0.388 mg/kg 0.0000388 % ✓ 23 indenc[123-cd]pyrene 205-989-2 [193-39-5] 0.271 mg/kg 0.216 mg/kg 0.0000216 % ✓ 24 dibenz[a,h]anthracene 200-181-8 53-70-3 0.242 mg/kg 0.193 mg/kg 0.0000216 % ✓ 25 benzo[c]hilperytene 200-181-8 53-70-3 0.242 mg/kg 0.269 mg/kg 0.0000269 % ✓ 26 benzo[k]hilperytene 205-883-8 [191-24-2] 0.337 mg/kg 0.593 mg/kg 0.0000593 % ✓ 27 benzo[k]hilperytene 205-916-6 207-05-9 207-753-7 [71-43-2] <0.01	24		chrysene			0.407			0.207		0.0000207.0/	,	
22 benzo[a]pyrene: benzo[del[pyrene] 0.385 mg/kg 0.308 mg/kg 0.000308 % ✓ 23 0 10-032-00-3 200-028-5 50-32-8 0.271 mg/kg 0.216 mg/kg 0.0000198 % ✓ 24 dibenz[a,h]anthracene 205-883-2 [193-39-5] 0.242 mg/kg 0.193 mg/kg 0.0000193 % ✓ 25 e benzo[ghi]perylene 205-883-8 [191-24-2] 0.337 mg/kg 0.269 mg/kg 0.0000593 % ✓ 26 benzo[ghi]perylene 205-911-9 205-99-2 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 27 benzo[b[lucranthene 50-705-7 [71-43-2] -0.01 mg/kg 0.593 mg/kg 0.000019 % ✓ 28 benzere - 50-763-7 [71-43-2] - -<0.01	21		601-048-00-0 205-923-4	218-01-9		0.497	mg/kg		0.397	тg/кg	0.0000397 %	\checkmark	
Image: second	22		benzo[a]pyrene; benzo[def]chrysene			0.385	ma/ka		0.308	ma/ka	0.0000308 %	./	
23 • indenc[123-cd]pyrene 0.271 mg/kg 0.216 mg/kg 0.0000216 % ✓ 24 dibenz[a,h]anthracene 601-041-00-2 200-181-8 §3-70-3 0.242 mg/kg 0.193 mg/kg 0.0000193 % ✓ 25 • benzo[h]iperylene 0.0583-8 [91-24-2 0.337 mg/kg 0.269 mg/kg 0.0000269 % ✓ 26 • benzo[h]iuoranthene 205-983-8 [91-24-2 0.337 mg/kg 0.593 mg/kg 0.0000593 % ✓ 26 benzo[h]iuoranthene 200-753-7 [71-43-2 <0.01			601-032-00-3 200-028-5	50-32-8								Ň	
Image: second	23	Θ	indeno[123-cd]pyrene			0.271	mg/kg		0.216	mg/kg	0.0000216 %	\checkmark	
24 didenz[a,hjantracene 0.242 mg/kg 0.193 mg/kg 0.0000193 % ✓ 25 e berzo[gh]perylene 0.583.8 [91-24-2 0.337 mg/kg 0.269 mg/kg 0.0000269 % ✓ 26 berzo[b]fluoranthene 0.0340.04 205-911-9 205-99-2 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 27 berzo[k]fluoranthene 0.0340.04 205-911-9 205-99-2 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 28 berzene 501-032-00-8 205-916-6 207-08-9 0.743 mg/kg 0.01 mg/kg 0.000019% < LOD			205-893-2	193-39-5									
b01-04-00-2 p00-14-00-2 p00-18-36 p3-70-3	24		dibenz[a,h]anthracene	F0 70 0		0.242	mg/kg		0.193	mg/kg	0.0000193 %	\checkmark	
25 0 benzűginjervene 0.337 mg/kg 0.269 mg/kg 0.0000269 % ✓ 26 benzo[b]fluoranthene 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 27 benzo[k]fluoranthene 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 28 benzo[k]fluoranthene 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 28 benzene 0.743 mg/kg 0.593 mg/kg 0.00001 % <lod< td=""> 29 toluene 205-916-6 207-08-9 <0.01 mg/kg</lod<>	-		601-041-00-2 200-181-8	p3-70-3									
26 benzoltjituaranthere 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 27 benzoltjituaranthere 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 28 benzene 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 28 benzene 0.743 mg/kg 0.593 mg/kg 0.00001 % <lod< td=""> 29 toluene 200-753-7 [71-43-2 <0.01</lod<>	25	۲	205-883-8	191-24-2		0.337	mg/kg		0.269	mg/kg	0.0000269 %	\checkmark	
26 601-034-00-4 205-91-9 205-99-2 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 27 benzelk/fluoranthene 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 28 benzene 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 29 toluene 205-916-6 207-08-9 <0.01			benzo[b]fluoranthene	101212					0.500				
27 benzo[k]fluoranthene 0.743 mg/kg 0.593 mg/kg 0.0000593 % ✓ 28 benzene	26		601-034-00-4 205-911-9	205-99-2		0.743	mg/kg		0.593	тg/кg	0.0000593 %	\checkmark	
21 601-036-00-5 205-916-6 207-08-9 c.1.10 mg/kg c.0.01 mg/kg<	27		benzo[k]fluoranthene			0 743	ma/ka		0 593	ma/ka	0 0000593 %		
28 benzene <0.01 mg/kg <0.01 mg/kg <0.00001 % <100 29 toluene <0.01			601-036-00-5 205-916-6	207-08-9		0.7 10	ing/kg			ing/kg		Ň	
601-020-00-8 200-753-7 71-43-2	28		benzene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29 toluene -<			601-020-00-8 200-753-7	71-43-2									
30 b01-021-00-3 203-623-9 [108-86-3]	29		toluene	400.00.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
Aylene			001-021-00-3 203-025-9	100-00-3									
203-576-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 108-38-3 [3] 118-38-3 [3] 108-38-3 [3] 108-38-3 [3] 118-38-3 [3] 108-38-3 [3] 118-38-38-38-3 [3] 118-38-3 [3]	30		601-022-00-9 202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
215-535-7 [4] [1330-20-7 [4]			203-576-3 [3]	108-38-3 [3]									
31 •	-		215-535-7 [4]	1330-20-7 [4]									
32 • pH 8.35 pH 9 <	31	8	ethylbenzene	100 41 4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32 PH 8.35 pH 8.	-	_	nH	100-41-4									
33 Cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } <2.5	32	9	Pri l	PH		8.35	рН		8.35	рН	8.35 pH		
34 • TPH (C6 to C40) petroleum group • TPH • TPH • State	33	4	cyanides { salts of hydrogen cyanide exception of complex cyanides such as ferricyanides and mercuric oxycyanide specified elsewhere in this Annex }	e with the s ferrocyanides, and those		<2.5	mg/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< th=""></lod<>
34 Image: Second s		6	TPH (C6 to C40) petroleum aroup	1									
35 tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane <0.01	34	۲		TPH		4.65	mg/kg		3.714	mg/kg	0.000371 %	\checkmark	
603-181-00-X 216-653-1 1634-04-4 Total: 0.102.94	35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
			603-181-00-X 216-653-1	1634-04-4						Total	0 102 %		

Kov

rey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration very low.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00037%)

Classification of sample: WS1[5m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS1[5m] Sample Depth: 5.00 m	LoW Code: Chapter: Entry:	 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
48.3% (dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 48.3% Dry Weight Moisture Correction applied (MC)

#		Dete	rminand Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	-1	1327-53-3		124	mg/kg	1.32	110.398	mg/kg	0.011 %	√	
2	4	cadmium { cadmium sulfide 048-010-00-4 215-147	-8	1306-23-6	1	41	mg/kg	1.285	35.533	mg/kg	0.00276 %	\checkmark	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269	-1	1317-38-0		222	mg/kg	1.252	187.387	mg/kg	0.0187 %	\checkmark	
4	4	chromium in chromium(III) oxide }	compounds	{ • chromium(III)		41	mg/kg	1.462	40.407	mg/kg	0.00404 %	~	
5	4	chromium in chromium(VI) oxide } 024-001-00-0 215-607	compounds	s { chromium(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compounds v specified elsewhere in this	vith the exc Annex (wor	eption of those st case) }	1	1402	mg/kg		945.381	mg/kg	0.0945 %	~	
7	4	mercury { mercury dichlorid	<mark>le</mark> } I-8	7487-94-7		308	mg/kg	1.353	281.102	mg/kg	0.0281 %	\checkmark	
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008 234-348	-5 [1] -1 [2]	12054-48-7 [1] 11113-74-9 [2]		131	mg/kg	1.579	139.524	mg/kg	0.014 %	~	
9	4	selenium { selenium compo cadmium sulphoselenide ar in this Annex }	ounds with t nd those sp	he exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222	-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; bo 005-008-00-8 215-125	ric oxide }	1303-86-2		841	mg/kg	3.22	1825.973	mg/kg	0.183 %	\checkmark	
12		naphthalene 601-052-00-2 202-049	-5	91-20-3		0.139	mg/kg		0.0937	mg/kg	0.00000937 %	\checkmark	
13	8	acenaphthylene 205-917	·-1	208-96-8		0.059	mg/kg		0.0398	mg/kg	0.00000398 %	\checkmark	

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound c	onc.	Classification value	AC Applied	Conc. Not Used
14		acenaphthene		0.0/8 m	aa/ka		0.0324	ma/ka	0.0000324 %	2	
14		201-469-6 83-32-9	-	0.040 11	ig/kg		0.0324	шу/ку	0.00000324 /8	~	
15		fluorene		0.029 m	na/ka		0.0196	ma/ka	0 00000196 %	1	
10		201-695-5 86-73-7		0.023 11	ig/itg		0.0100	ing/kg	0.00000130 /8	~	
16		phenanthrene		1.047 m	na/ka		0.706	ma/ka	0.0000706 %	1	
		201-581-5 85-01-8			.99					Ť	
17	٥	anthracene		0.124 m	na/ka		0.0836	ma/ka	0.00000836 %	1	
		204-371-1 120-12-7			.33					ľ	
18	۰	fluoranthene		0.508 m	na/ka		0.343	mg/kg	0.0000343 %	1	
		205-912-4 206-44-0			0 0						
19	0	pyrene		0.455 m	ng/kg		0.307	mg/kg	0.0000307 %	\checkmark	
		204-927-3 129-00-0			5.5						
20		benzo[a]anthracene		0.461 m	ng/kg		0.311	mg/kg	0.0000311 %	\checkmark	
		601-033-00-9 200-280-6 56-55-3									
21		chrysene		0.542 m	ng/kg		0.365	mg/kg	0.0000365 %	\checkmark	
		601-048-00-0 205-923-4 218-01-9	_								
22		benzo[a]pyrene; benzo[def]chrysene	_	0.543 m	ng/kg		0.366	mg/kg	0.0000366 %	\checkmark	
		601-032-00-3 200-028-5 50-32-8	_								
23	۲	indeno[123-cd]pyrene	_	0.551 m	ng/kg		0.372	mg/kg	0.0000372 %	\checkmark	
		205-893-2 193-39-5	_							+	
24		dibenz[a,h]anthracene	_	0.525 m	ng/kg		0.354	mg/kg	0.0000354 %	\checkmark	
		601-041-00-2 200-181-8 53-70-3	_								
25	0	benzolghijperylene		0.708 m	ng/kg		0.477	mg/kg	0.0000477 %	\checkmark	
		205-883-8 191-24-2	_								
26		benzo[b]fluoranthene		1.074 m	ng/kg		0.724	mg/kg	0.0000724 %	\checkmark	
		601-034-00-4 205-911-9 205-99-2									
27			_	1.074 m	ng/kg		0.724	mg/kg	0.0000724 %	\checkmark	
		NH	-								
28	8	рп	-	7.61 p	н		7.61	pН	7.61 pH		
29	4	cyanides { a salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5 m	ng/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< th=""></lod<>
								Total:	0.357 %		

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS2[1m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS2[1m] Sample Depth:	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
18.5% (dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 18.5% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered dat	a	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	arsenic { arsenic trioxide }		18 mg	/kg	1.32	20.056 mg/kg	0.00201 %	~	
2	4	cadmium { cadmium sulfide } 1306-23-6	1	1 mg	/kg	1.285	1.085 mg/kg	0.0000844 %	~	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		136 mg	/kg	1.252	143.664 mg/kg	0.0144 %	~	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide }		32 mg	/kg	1.462	39.468 mg/kg	0.00395 %	\checkmark	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg	/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	*	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	408 mg	/kg		344.304 mg/kg	0.0344 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3 mg	/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		37 mg	/kg	1.579	49.318 mg/kg	0.00493 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<0.5 mg	/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	T	<1 mg	/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		259 mg	/kg	3.22	703.754 mg/kg	0.0704 %	~	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.389 mg	/kg		0.328 mg/kg	0.0000328 %	\checkmark	
13	0	acenaphthylene 205-917-1 208-96-8		0.209 mg	/kg		0.176 mg/kg	0.0000176 %	~	

Page 10 of 96

#			Determinand		o Note	User entered	User entered data		Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLF							MC	
14	8	acenaphthene				0.818	mg/kg		0.69	mg/kg	0.000069 %	~	
			201-469-6	83-32-9								ľ	
15	0	fluorene	001 005 5			0.784	mg/kg		0.662	mg/kg	0.0000662 %	\checkmark	
			201-695-5	86-73-7	-								
16	۲	pnenanthrene	001 591 5	05 01 0		9.251	mg/kg		7.807	mg/kg	0.000781 %	\checkmark	
		anthracene	201-361-3	03-01-0	-								
17	۲	animacene	204-371-1	120-12-7		0.905	mg/kg		0.764	mg/kg	0.0000764 %	\checkmark	
		fluoranthene	F0.01.1										
18			205-912-4	206-44-0		6.391	mg/kg		5.393	mg/kg	0.000539 %	\checkmark	
10		pyrene	1			E 251	malka		4 516	malka	0.000452.9/	,	
19			204-927-3	129-00-0		5.551	шу/ку		4.510	тід/ку	0.000452 %	~	
20		benzo[a]anthracen	e			2 467	ma/ka		2 082	ma/ka	0 000208 %	./	
		601-033-00-9	200-280-6	56-55-3		2.107				ing/ng		`	
21		chrysene				3.051	mg/kg		2.575	mg/kg	0.000257 %	1	
		601-048-00-0	205-923-4	218-01-9	_							ľ	
22		benzo[a]pyrene; be	enzo[def]chrysene			2.268	mg/kg		1.914	mg/kg	0.000191 %	\checkmark	
		601-032-00-3	200-028-5	50-32-8	-								
23	۲	indeno[123-cd]pyre	ene	102.20 5		1.342	mg/kg		1.132	mg/kg	0.000113 %	\checkmark	
		dibenz[a b]anthrac	205-695-2	193-39-3	-								
24		601-041-00-2	200-181-8	53-70-3	-	1.239	mg/kg		1.046	mg/kg	0.000105 %	\checkmark	
	_	benzo[ghi]pervlene		00100									
25			205-883-8	191-24-2		1.705	mg/kg		1.439	mg/kg	0.000144 %	\checkmark	
		coronene	1			0.477			0.400		0.0000400.0/	,	
20			205-881-7	191-07-1		0.477	тід/кд		0.403	тід/кд	0.0000403 %	~	
27		benzo[b]fluoranthe	enzo[b]fluoranthene			4 16	ma/ka		3 511	ma/ka	0 000351 %	./	
		601-034-00-4	205-911-9	205-99-2								Ň	
28		benzo[k]fluoranthe	ne			4.16	mg/kg		3.511	mg/kg	0.000351 %	\checkmark	
		601-036-00-5	205-916-6	207-08-9	1								
29		benzene	000 770 7	H 4400	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	/1-43-2	-								
30		601 021 00 3	203 635 0	109 99 3	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		xvlene	203-023-9	100-00-3	-							\vdash	
31		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32		ethylbenzene				<0.01	ma/ka		<0.01	ma/ka	<0.00001 %		
02		601-023-00-4	202-849-4	100-41-4			iiig/kg			ing/kg			
33	0	polychlorobiphenyl	s; PCB			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		602-039-00-4	215-648-1	1336-36-3	_								
34	8	рн	1		_	8.35	pН		8.35	pН	8.35 pH		
				PH									
35	44	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	of hydrogen cyanid ex cyanides such a nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<2.5	mg/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< th=""></lod<>
										iotal:	0.135 %	1	

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: WS2[3m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS2[3m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
30.9%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 30.9% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	ioxide }	1007 50 0		71	mg/kg	1.32	71.614	mg/kg	0.00716 %	~	
2	4	cadmium { cadmiu	m sulfide }	1327-53-3	1	1	mg/kg	1.285	0.982	mg/kg	0.0000764 %	\checkmark	
<u> </u>		048-010-00-4	215-147-8	1306-23-6									
3	4	copper { copper(II)	oxide }	4047.00.0		238	mg/kg	1.252	227.596	mg/kg	0.0228 %	\checkmark	
<u> </u>		029-016-00-6	215-269-1	1317-38-0									
4	44	chromium in chrom <mark>oxide</mark> }	nium(III) compounds	s { ^e <mark>chromium(III)</mark>		23	mg/kg	1.462	25.681	mg/kg	0.00257 %	\checkmark	
			215-160-9	1308-38-9									
5	4	chromium in chrom oxide }	nium(VI) compounds	s {		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
6	4	lead { <a>lead comp specified elsewher	pounds with the exc e in this Annex (wor	eption of those st case) }	1	972	mg/kg		742.552	mg/kg	0.0743 %	\checkmark	
		082-001-00-6											
7	4	mercury { mercury	dichloride }			9	ma/ka	1.353	9.306	ma/ka	0.000931 %	1	
		080-010-00-X	231-299-8	7487-94-7									<u> </u>
	×\$	nickel { <mark>nickel dihydroxide</mark> }				64		4 570	570 77 225		0.00770.0/		
8		028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		64	mg/kg	1.579	79 77.225	mg/kg	0.00772 %	Ý	
9	4	selenium { <mark>selenium</mark> cadmium sulphose in this Annex }	m compounds with t elenide and those sp	he exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< td=""></lod<>
		034-002-00-8											
10	4	zinc { zinc oxide }	0.45.000.5			<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
<u> </u>		030-013-00-7	215-222-5	1314-13-2									
11	4	DOFON { diboron tric	215-125-8	1303-86-2		312	mg/kg	3.22	767.458	mg/kg	0.0767 %	\checkmark	
-		nanhthalene	210120-0	1000-00-2									
12		601-052-00-2	202-049-5	91-20-3		0.23	mg/kg		0.176	mg/kg	0.0000176 %	\checkmark	
12		acenaphthylene	0.00			0.169	ma/ka		0 129	ma/ka	0.0000128.9/	1	
13			205-917-1	208-96-8		0.108	ту/ку		0.128	шу/ку	0.0000120 %	V	

#		CI P index number	Determinand	CAS Number	P Note	User entered	User entered data		Conv. Factor Compound conc.		Classification value	C Applied	Conc. Not Used
			Loritanisor		<u>ರ</u>							ž	
14	Θ	acenaphinene	201-469-6	83-32-9	-	0.054	mg/kg		0.0413	mg/kg	0.00000413 %	\checkmark	
45	8	fluorene		00 02 0		0.005			0.0407		0.00000.407.0/	,	
15			201-695-5	86-73-7		0.065	mg/kg		0.0497	mg/kg	0.00000497 %	~	
16	8	phenanthrene				1.006	mg/kg		0.769	mg/kg	0.0000769 %	\checkmark	
		anthracana	201-581-5	85-01-8	-								
17	8	anunacene	204-371-1	120-12-7		0.268	mg/kg		0.205	mg/kg	0.0000205 %	\checkmark	
10	8	fluoranthene				1.097			0.02		0.000083.0/	,	
10			205-912-4	206-44-0		1.087	тід/кд		0.83	ттд/кд	0.000083 %	~	
19	8	pyrene				0.974	mg/kg		0.744	mg/kg	0.0000744 %	\checkmark	
			204-927-3	129-00-0	-							-	
20		benzo[a]anthracen		66 55 2	_	0.726	mg/kg		0.555	mg/kg	0.0000555 %	\checkmark	
		chrysene	200-280-6	20-22-3									
21		601-048-00-0	205-923-4	218-01-9	-	0.842	mg/kg		0.643	mg/kg	0.0000643 %	\checkmark	
22		benzo[a]pyrene; be	nzo[def]chrysene			0.765	malka		0 594	malka	0.0000584.9/	,	
22		601-032-00-3	200-028-5	50-32-8		0.765	тід/кд		0.564	тід/кд	0.0000584 %	~	
23	8	indeno[123-cd]pyre	ene			0.534	ma/ka		0.408	mg/kg	0.0000408 %	1	
			205-893-2	193-39-5									
24		dibenz[a,h]anthrac	ene	F0 70 0		0.483	mg/kg		0.369	mg/kg	0.0000369 %	\checkmark	
	-	601-041-00-2	200-181-8	53-70-3	-								
25	۲	benzolgnijperviene	205-883-8	191-24-2		0.722	mg/kg		0.552	mg/kg	0.0000552 %	\checkmark	
26		benzo[b]fluoranthe	ne			4 5 4 2			1 150		0.000116.0/	,	
20		601-034-00-4	205-911-9	205-99-2		1.515	тту/ку		1.150	тту/ку	0.000110 %	~	
27		benzo[k]fluoranthe		607.00.0	_	1.513	mg/kg		1.156	mg/kg	0.000116 %	\checkmark	
		601-036-00-5	205-916-6	207-08-9									
28		601-020-00-8	200-753-7	71-43-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20		toluene	1			-0.01	ma/ka		<0.01	ma/ka	<0.00001.94		
23		601-021-00-3	203-625-9	108-88-3		<0.01	шу/ку		<0.01	mg/kg	<0.000001 //		
		xylene											
30		601-022-00-9	202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3]									
			215-535-7 [4]	1330-20-7 [4]	_							\square	
31	8	ethylbenzene	002 840 4	100 41 4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		nH	202-049-4	100-41-4	-								
32				PH	-	8.24	рН		8.24	рН	8.24 pH		
33	\$	cyanides { salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyanid ex cyanides such as hercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those	_	<2.5	mg/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< td=""></lod<>
24	 TPH (C6 to C40) petroleum group 			0.45	100 cr /l -		0.455	m c // -	0.000646.0/	,			
34	TPH			8.45	mg/кg		0.455	mg/kg	0.000646 %	\checkmark			
35		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE; /lpropane	4004.04.4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		03-181-00-X 216-653-1 1634-04-4		1034-04-4	1					Total	0.194 %	\vdash	

Key User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 8 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4 concentration <LOD Below limit of detection CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration very low.

Hazard Statements hit:

Flam. Lig. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00064%)

Classification of sample: WS2[5m]

Sample details

Sample Name:	LoW Code:	
WS2[5m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
5.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
55.6%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 55.6% Dry Weight Moisture Correction applied (MC)

#		Determinand		P Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number	CAS Number	CLF							MC	
1	4	arsenic { arsenic trioxide }			150	mg/kg	1.32	127.281	mg/kg	0.0127 %	1	
		033-003-00-0 215-481-4	1327-53-3									
2	4	cadmium { cadmium sulfide }		1	35	mg/kg	1.285	28.91	mg/kg	0.00225 %	1	
		048-010-00-4 215-147-8	1306-23-6									
3	4	copper {			292	mg/kg	1.252	234.909	mg/kg	0.0235 %	\checkmark	
		029-016-00-6 215-269-1	1317-38-0									
4	4	chromium in chromium(III) compounds oxide }	{ [•] chromium(III)		44	mg/kg	1.462	41.329	mg/kg	0.00413 %	~	
		215-160-9	1308-38-9									
5	4	chromium in chromium(VI) compounds oxide }	{		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>
		024-001-00-0 215-607-8	1333-82-0									
6	4	lead { <pre>lead compounds with the exce specified elsewhere in this Annex (wors)</pre>	eption of those st case) }	1	1425	mg/kg		915.81	mg/kg	0.0916 %	~	
		082-001-00-6										
7	4	mercury { mercury dichloride }			320	mg/kg	1.353	278.352	mg/kg	0.0278 %	1	
		080-010-00-X 231-299-8	7487-94-7									
	4	nickel { nickel dihydroxide }			470		1 570	1 570 175 613		0.0176.9/		
8		028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		173	mg/кg	1.579	175.613	тg/кg	0.0176 %	~	
9	~	selenium { selenium compounds with th cadmium sulphoselenide and those spo in this Annex }	ne exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
		034-002-00-8										
10	4	ZINC { ZINC OXIGE }	1014 40 0		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
			1314-13-2									
11	44	005-008-00-8 215-125-8	1303-86-2		1124	mg/kg	3.22	2325.927	mg/kg	0.233 %	\checkmark	
40		naphthalene			0.05			0.0001		0.0000001.0/	,	
12		601-052-00-2 202-049-5	91-20-3		0.05	mg/kg		0.0321	mg/кg	0.00000321 %	\checkmark	
13		acenaphthylene			0.029	ma/ka		0.0186	ma/ka	0.00000186 %	1	
		205-917-1	208-96-8			mg/kg		0.0186	тіу/ку		Ċ	

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
-		acenaphthene	Ū					Σ	
14		201-469-6 83-32-9	-	0.036 mg/kg		0.0231 mg/kg	0.00000231 %	\checkmark	
<u> </u>		fluorene							
15		201-695-5 86-73-7		0.019 mg/kg		0.0122 mg/kg	0.00000122 %	\checkmark	
10		phenanthrene		0.457 ma///a		0.204 mallia	0.0000004.8/	,	
10		201-581-5 85-01-8		0.457 mg/kg		0.294 mg/kg	0.0000294 %	\checkmark	
17		anthracene		0.057 mg/kg		0.0366 ma/ka	0.0000366.%		
Ľ′		204-371-1 120-12-7		0.037 119/Kg		0.0500 mg/kg	0.00000300 %		
18		fluoranthene		0.3 ma/ka		0.193 ma/ka	0.0000193 %	1	
		205-912-4 206-44-0						ľ	
19	۲	pyrene		0.259 mg/kg		0.166 mg/kg	0.0000166 %	\checkmark	
		204-927-3 129-00-0							
20		benzo[a]anthracene		0.224 mg/kg		0.144 mg/kg	0.0000144 %	\checkmark	
		601-033-00-9 <u>200-280-6</u> <u>56-55-3</u>	-						
21		chrysene		0.292 mg/kg		0.188 mg/kg	0.0000188 %	\checkmark	
┝		601-048-00-0 205-923-4 218-01-9	-		<u> </u>			┼─┤	
22		benzolajpyrene; benzolderjchrysene		0.297 mg/kg		0.191 mg/kg	0.0000191 %	\checkmark	
		601-032-00-3 200-028-5 p0-32-8	-						
23	8	bos 803 2 403 30 5	-	0.284 mg/kg		0.183 mg/kg	0.0000183 %	\checkmark	
-		dihanz[a h]anthracana					0.0000158 %	+	
24		601-041-00-2 200-181-8 53-70-3	$\left \right $	0.246 mg/kg		0.158 mg/kg		\checkmark	
	_	benzo[abi]pervlene	-						├┦
25	۳	205-883-8 191-24-2	-	0.378 mg/kg		0.243 mg/kg	0.0000243 %	\checkmark	
		benzo[b]fluoranthene							
26		601-034-00-4 205-911-9 205-99-2		0.583 mg/kg		0.375 mg/kg	0.0000375 %	\checkmark	
27		benzo[k]fluoranthene		0.592 ma/ka		0.275 ma/ka	0 0000275 %		
21		601-036-00-5 205-916-6 207-08-9		0.583 mg/kg		0.375 mg/kg	0.0000375 %	\checkmark	
28	8	pH		7.72 nH		7.72 nH	7 72 nH		
20		PH		7.72 pm		7.72 pri	7.72 pr		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5 mg/kg	1.884	<4.71 mg/kg	<0.000471 %		<lod< th=""></lod<>
	L					Total:	0.413 %		

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS3[0.5m]

Sample details

Sample Name:	LoW Code:	
WS3[0.5m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
14.3%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 14.3% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number	CAS Number	LP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	IC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		ပ ၂	18	ma/ka	1.32	20 793	ma/ka	0 00208 %	<u>Σ</u>	
Ŀ		033-003-00-0 215-481-4	1327-53-3								Ň	
2	4	cadmium { <mark>cadmium sulfide</mark> }		1	1	ma/ka	1 285	1 124	ma/ka	0 0000875 %	./	
		048-010-00-4 215-147-8	1306-23-6								ř	
3	4	copper {			113	ma/ka	1 252	123 754	ma/ka	0 0124 %	./	
Ľ		029-016-00-6 215-269-1	1317-38-0			iiig/itg	1.202		iiig/itg	0.0121 /0	Ň	
4	4	chromium in chromium(III) compounds oxide }	; { [•] chromium(III)		22	mg/kg	1.462	28.131	mg/kg	0.00281 %	~	
		215-160-9	1308-38-9									
5	4	chromium in chromium(VI) compounds oxide }	s {		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8	1333-82-0									
6	4	lead {	eption of those st case) }	1	821	mg/kg		718.285	mg/kg	0.0718 %	\checkmark	
		082-001-00-6										
7	4	mercury { mercury dichloride }			3	ma/ka	1.353	3.552	ma/ka	0.000355 %	\checkmark	
		080-010-00-X 231-299-8	7487-94-7						5.5		•	
	4	nickel { nickel dihydroxide }					45.000 #					
8		028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		33	mg/kg	1.579	45.602	mg/kg	0.00456 %	\checkmark	
9	4	selenium { selenium compounds with t cadmium sulphoselenide and those sp in this Annex }	he exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
<u> </u>	_										-	
10	-4	2110 { 2110 OXIDE }	1211 12 2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
<u> </u>		030-013-00-7 215-222-5	1314-13-2						-		-	
11	~	005-008-00-8 215-125-8	1303-86-2		256	mg/kg	3.22	721.163	mg/kg	0.0721 %	\checkmark	
12		naphthalene			0 225	ma/ka		0 197	ma/ka	0 0000197 %		
Ľ		601-052-00-2 202-049-5	91-20-3		0.220	ing/itg		0.197 119/Kg	g 0.0000197 %	Ŷ		
13	۲	acenaphthylene			0.17	mg/kg		0.149	mg/kg	0.0000149 %	\checkmark	
		kno-a11-1	200-90-0									

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	1C Applied	Conc. Not Used
		acenaphthene		0.450			0.400 //	0.0000400.0/	2	
14		201-469-6 83-32-9		0.156	mg/kg		0.136 mg/kg	0.0000136 %	\checkmark	
4.5		fluorene		0.447			0.120 malka	0.0000120.0/		
15		201-695-5 86-73-7		0.147	тід/кд		0.129 mg/kg	0.0000129 %	\checkmark	
16		phenanthrene		2 072	ma/ka		1.814 mg/kg	0.000181.%		
10		201-581-5 85-01-8		2.073	шу/ку		1.014 Hig/kg	0.000101 //	~	
17	۲	anthracene		0 338	ma/ka		0.296 mg/kg	0.0000296.%		
		204-371-1 120-12-7		0.000	iiig/kg		0.230 mg/kg	0.0000230 /8	~	
18	0	fluoranthene 205-912-4 206-44-0	_	2.56	mg/kg		2.24 mg/kg	0.000224 %	\checkmark	
19	0	pyrene box ooz o		2.259	mg/kg		1.976 mg/kg	0.000198 %	\checkmark	
-		204-927-3 129-00-0	_							
20				1.236	mg/kg		1.081 mg/kg	0.000108 %	\checkmark	
-		001-033-00-9 200-200-0 p8-55-5								
21		601-048-00-0 205-923-4 218-01-9		1.408	mg/kg		1.232 mg/kg	0.000123 %	\checkmark	
		benzolalpyrene: benzoldeflchrysene	+							
22		601-032-00-3 200-028-5 50-32-8	_	1.158	mg/kg		1.013 mg/kg	0.000101 %	\checkmark	
		indeno[123-cd]pvrene								
23		205-893-2 193-39-5		1.036	mg/kg		0.906 mg/kg	0.0000906 %	\checkmark	
0.4		dibenz[a.h]anthracene		0.000			0.704	0.0000704.0/		
24		601-041-00-2 200-181-8 53-70-3		0.836	mg/кg		0.731 mg/kg	0.0000731 %		
25	۲	benzo[ghi]perylene		1 220	malka		1.092 ma/ka	0.000108.9/		
25		205-883-8 191-24-2		1.230	шу/ку		1.003 Hig/kg	0.000108 %	\checkmark	
26		benzo[b]fluoranthene		2 281	ma/ka		1.996 ma/ka	0.0002 %		
		601-034-00-4 205-911-9 205-99-2		2.201	iiig/itg			0.0002 /0	Ň	
27		benzo[k]fluoranthene		2.281	ma/ka		1.996 mg/kg	0.0002 %		
		601-036-00-5 205-916-6 207-08-9							-	
28	Θ	pH		8.1	pН		8.1 pH	8.1 pH		
		PH	_				-			
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5	mg/kg	1.884	<4.71 mg/kg	<0.000471 %		<lod< th=""></lod<>
		000-007-00-3					Total	0.169 %	\vdash	

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS3[4m]

Sample details

Sample Name:	LoW Code:	
WS3[4m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
4.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
21%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 21% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		9	mg/kg	1.32	9.821	mg/kg	0.000982 %	√	
2	4	cadmium { cadmium sulfide } 048-010-00-4	_ 1	1	mg/kg	1.285	1.062	mg/kg	0.0000826 %	\checkmark	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		13	mg/kg	1.252	13.449	mg/kg	0.00134 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide }		25	mg/kg	1.462	30.197	mg/kg	0.00302 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	183	mg/kg		151.24	mg/kg	0.0151 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	_	<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		18	mg/kg	1.579	23.497	mg/kg	0.00235 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2	_	<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		79	mg/kg	3.22	210.223	mg/kg	0.021 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.068	mg/kg		0.0562	mg/kg	0.00000562 %	\checkmark	
13	۵	acenaphthylene 205-917-1 208-96-8		0.316	mg/kg		0.261	mg/kg	0.0000261 %	\checkmark	

#		Determinand	P Note	User entered	data	Conv. Factor	Compound conc.	Classification value	C Applied	Conc. Not Used
	8	acenaphthene	ರ 	0.054			0.0404	0.00000404.8/	ž	
14		201-469-6 83-32-9		0.051	mg/kg		0.0421 mg/kg	0.00000421 %	V	
15	8	fluorene		0.11	mg/kg		0.0909 mg/kg	0.00000909 %	\checkmark	
16	0	phenanthrene		2.835	mg/kg		2.343 mg/kg	0.000234 %	\checkmark	
17	0	anthracene	F	0.84	mg/kg		0.694 mg/kg	0.0000694 %	\checkmark	
		204-371-1 120-12-7	-							
18	۵	205-912-4 206-44-0		0.41	mg/kg		0.339 mg/kg	0.0000339 %	\checkmark	
19	8	pyrene		3.672	mg/kg		3.035 mg/kg	0.000303 %	\checkmark	
20		benzo[a]anthracene		2.28			1.067 malka	0.000107.0/	,	
20		601-033-00-9 200-280-6 56-55-3		2.30	ту/ку		1.967 mg/kg	0.000197 %	~	
21		chrysene		2.222	mg/kg		1.836 mg/kg	0.000184 %	\checkmark	
		601-048-00-0 205-923-4 218-01-9	-						Ľ	
22		benzolarjonrysene 601-032-00-3 200-028-5 50-32-8		2.097	mg/kg		1.733 mg/kg	0.000173 %	\checkmark	
23	0	indeno[123-cd]pyrene		1.235	mg/kg		1.021 mg/kg	0.000102 %	\checkmark	
		dibenzía hlanthracene							-	
24		601-041-00-2 200-181-8 53-70-3		1.081	mg/kg		0.893 mg/kg	0.0000893 %	\checkmark	
25		benzo[ghi]perylene		1 224	ma/ka		1 102 mg/kg	0.00011.%	,	
25		205-883-8 191-24-2		1.554	iiig/kg		1.102 mg/kg	0.00011 /8	~	
26	8	coronene		0.342	mg/kg		0.283 mg/kg	0.0000283 %	\checkmark	
-		205-881-7 [191-07-1	-						-	
27		601-034-00-4 205-911-9 205-99-2		3.591	mg/kg		2.968 mg/kg	0.000297 %	\checkmark	
28		benzo[k]fluoranthene		3.591	ma/ka		2.968 ma/ka	0.000297 %	1	
		601-036-00-5 205-916-6 207-08-9			5.5				Ľ	
29		benzene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 (71-43-2	+						-	
30		601-021-00-3 203-625-9 108-88-3		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		xylene								
31		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
32	8	ethylbenzene		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
		polychlorobiphenyls; PCB		0.001	m c //		.0.001	.0.0000001.0/	1	
33		602-039-00-4 215-648-1 1336-36-3		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
34	8	pH		7.99	pН		7.99 pH	7.99 pH		
-	-	PH	-						-	
35	~	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5	mg/kg	1.884	<4.71 mg/kg	<0.000471 %		<lod< th=""></lod<>
36	0	TPH (C6 to C40) petroleum group	ļ	20.07	mg/kg		16.587 mg/kg	0.00166 %	~	
-		tert-butyl methyl ether; MTBE;	\vdash						-	
37		2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
							Total:	0.0485 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration very low. Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00166%)

Classification of sample: WS4[0.5m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS4[0.5m]	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
7.8% (dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 7.8% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		7 mg/kg	1.32	8.574 mg/kg	0.000857 %	\checkmark	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	1 mg/kg	1.285	1.192 mg/kg	0.0000928 %	\checkmark	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		47 mg/kg	1.252	54.577 mg/kg	0.00546 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide } 215-160-9 1308-38-9		34 mg/kg	1.462	46.097 mg/kg	0.00461 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	168 mg/kg		155.844 mg/kg	0.0156 %	\checkmark	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		48 mg/kg	1.579	70.33 mg/kg	0.00703 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		207 mg/kg	3.22	618.288 mg/kg	0.0618 %	~	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.056 mg/kg		0.0519 mg/kg	0.00000519 %	\checkmark	
13	8	acenaphthylene 205-917-1 208-96-8		0.049 mg/kg		0.0455 mg/kg	0.00000455 %	\checkmark	

#			Determinand		o Note	User entere	d data	Conv. Factor Compound conc.		conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	G							ЫN	
14	8	acenaphthene		·		0.037	ma/ka		0.03/3	ma/ka	0.0000343 %	/	
14			201-469-6	83-32-9		0.007	iiig/kg		0.0040	шу/ку	0.00000343 /8	~	
15		fluorene				0.036	ma/ka		0 0334	ma/ka	0 00000334 %	1	
			201-695-5	86-73-7		0.000						Ň	
16		phenanthrene				0.339	ma/ka		0.314	ma/ka	0.0000314 %	1	
			201-581-5	85-01-8								ľ	
17	8	anthracene	204-371-1	120-12-7	_	0.116	mg/kg		0.108	mg/kg	0.0000108 %	\checkmark	
18		fluoranthene				0.564	ma/ka		0 523	ma/ka	0 0000523 %	1	
			205-912-4	206-44-0	1							ľ	
19		pyrene				0.568	ma/ka		0.527	ma/ka	0.0000527 %	1	
			204-927-3	129-00-0	1							ľ	
20		benzo[a]anthracene	e			0.499	mg/kg		0.463	mg/kg	0.0000463 %	1	
		601-033-00-9	200-280-6	56-55-3								ľ	
21		chrysene				0.46	mg/kg		0.427	mg/kg	0.0000427 %	1	
		601-048-00-0	205-923-4	218-01-9								·	
22		benzo[a]pyrene; be	nzo[def]chrysene			0.614	mg/kg		0.57	mg/kg	0.000057 %	1	
		601-032-00-3	200-028-5	50-32-8									
23	0	indeno[123-cd]pyre	ne			0.764	mg/kg		0.709	mg/kg	0.0000709 %	\checkmark	
			205-893-2	193-39-5									
24		dibenz[a,h]anthrace	ene			0.273	mg/kg		0.253	mg/kg	0.0000253 %	\checkmark	
		601-041-00-2	200-181-8	53-70-3									
25	0	benzo[ghi]perylene				0.729	mg/kg		0.676	mg/kg	0.0000676 %	\checkmark	
			205-883-8	191-24-2									
26		benzo[b]fluoranthei	ne			0.822	mg/kg		0.763	mg/kg	0.0000763 %	\checkmark	
		601-034-00-4	205-911-9	205-99-2	-								
27		benzo[k]fluoranther		007.00.0		0.822	mg/kg		0.763	mg/kg	0.0000763 %	\checkmark	
-		601-036-00-5	205-916-6	207-08-9									
28			000 750 7	74 40 0	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		001-020-00-8	200-753-7	71-43-2	+								
29			202 625 0	100.00.0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		001-021-00-3	203-023-9	100-00-3	-								
30		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31	0	ethylbenzene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
32	0	рН				8.71	pН		8.71	pН	8.71 pH		
				РН	-								
33	4	cyanides { salts exception of completerricyanides and m specified elsewhere	of hydrogen cyanide ex cyanides such as hercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
<u> </u>			+							\vdash			
34	8		enoieum group	ТРН	-	389	mg/kg		360.853	mg/kg	0.0361 %	\checkmark	
-	-	tert-butyl motbyl of			+							\vdash	
35		2-methoxy-2-methy	/lpropane	4004.04		<0.01	mg/kg		<0.01	mg/kg	g <0.000001 %		<lod< td=""></lod<>
$\mid \mid \mid$	-	603-181-00-X	216-653-1	1634-04-4	+							\square	
36		pnenoi 604-001-00-2	203-632-7	108-95-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
										Total:	0.133 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration low.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0361%)

Classification of sample: WS4[2m]

Sample details

Sample Name:	LoW Code:	
WS4[2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
20.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 20.5% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number	CAS Number	LP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	4007.50.0	Ū	15	mg/kg	1.32	16.436	mg/kg	0.00164 %	∠	
		033-003-00-0 215-481-4	1327-53-3									
2	44		1206 22 6	1	1	mg/kg	1.285	1.067	mg/kg	0.000083 %	\checkmark	
<u> </u>		copper { copper(II) oxide }	1300-23-0									
3		029-016-00-6 215-269-1	1317-38-0		134	mg/kg	1.252	139.202	mg/kg	0.0139 %	\checkmark	
4	4	chromium in chromium(III) compound: oxide }	s {		18	mg/kg	1.462	21.832	mg/kg	0.00218 %	~	
<u> </u>	_	215-160-9	1308-38-9									
5	~	oxide }			<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8	1333-82-0									
6	4	lead {	eption of those rst case) }	1	289	mg/kg		239.834	mg/kg	0.024 %	\checkmark	
		082-001-00-6										
7	4	mercury { mercury dichloride }			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8	7487-94-7									
8	4	nickel { nickel dihydroxide }	40054 40 7 44		30	ma/ka	1 579	39 324	ma/ka	0 00393 %	,	
		235-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]			ing/kg	1.070	00.021	mg/ng	0.00000 /0	ľ	
9	4	selenium { selenium compounds with cadmium sulphoselenide and those sp in this Annex } 034-002-00-8	the exception of becified elsewhere		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
40		zinc { zinc oxide }	<u> </u>				4.045	4.045		0.000404.0/		
10		030-013-00-7 215-222-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lud< td=""></lud<>
11	4	boron { diboron trioxide; boric oxide }			124	ma/ka	3.22	331 34	ma/ka	0.0331 %		
		005-008-00-8 215-125-8	1303-86-2		124	iiig/kg	5.22	551.54	mg/kg	0.0001 //	~	
12		naphthalene			0.036	ma/ka		0.0299	ma/ka	0.00000299 %	1	
		601-052-00-2 202-049-5	91-20-3								•	
13	۲	acenaphthylene		ļ	0.013	mg/kg		0.0108	mg/kg	0.00000108 %	\checkmark	
		205-917-1	208-96-8									

CLP index number EC Number 14 acenaphthene 15 fluorene 201-695-5 86	Z	User entere	d data	Conv. Factor	Compound c	onc.	Classification value	Applie	Conc. Not Used
14 acenaphthene 201-469-6 83 15 fluorene 201-695-5 86	CAS Number							ВC	
201-469-6 83 15 • fluorene 201-695-5 86		0.016	mg/kg		0.0133	mg/kg	0.00000133 %	\checkmark	
15 1100rene 201-695-5 86	3-32-9							-	
201-695-580	0.70.7	0.007	mg/kg		0.0058	mg/kg	0.00000581 %	\checkmark	
	6-73-7								
16 201-581-5 85	5-01-8	0.221	mg/kg		0.183	mg/kg	0.0000183 %	\checkmark	
anthracene	0010								
204-371-1 12	20-12-7	0.068	mg/kg		0.0564	mg/kg	0.00000564 %	\checkmark	
10 Influoranthene		0.024			0.404		0.0000104.%	,	
205-912-4 20	06-44-0	0.234	тід/кд		0.194	тід/кд	0.0000194 %	~	
19 pyrene		0 247	ma/ka		0 205	ma/ka	0 0000205 %	./	
204-927-3 12	29-00-0	0.2 11	ing/itg		0.200	iiig/itg	0.0000200 //	Ŷ	
20 benzo[a]anthracene		0.315	mg/kg		0.261	mg/kg	0.0000261 %	\checkmark	
601-033-00-9 200-280-6 56	6-55-3								
21 chrysene	10.01.0	0.285	mg/kg		0.237	mg/kg	0.0000237 %	\checkmark	
601-048-00-0 205-923-4 21	18-01-9								
22 benzolajpyrene; benzolderjchrysene	0.32.8	0.151	mg/kg		0.125	mg/kg	0.0000125 %	\checkmark	
o indepo[123-cd]pyrene	0-32-0				1				
23 205-893-2 15	93-39-5	0.155	mg/kg		0.129	mg/kg	0.0000129 %	\checkmark	
dibenz[a.h]anthracene									
24 <u>601-041-00-2</u> 200-181-8 <u>53</u>	3-70-3	0.081	mg/kg		0.0672	mg/kg	0.00000672 %	\checkmark	
benzo[ghi]perylene		0.120	malka		0.115	ma/ka	0.0000115.0/	,	
205-883-8 19	91-24-2	0.139	mg/kg		0.115	пу/ку	0.0000115 %	~	
26 benzo[b]fluoranthene		0.315	ma/ka		0 261	ma/ka	0 0000261 %	1	
601-034-00-4 205-911-9 20	05-99-2	0.010						ľ	
27 benzo[k]fluoranthene		0.315	mg/kg		0.261	mg/kg	0.0000261 %	\checkmark	
601-036-00-5 205-916-6 20	07-08-9								
28 [•] PH		8.69	pН		8.69	pН	8.69 pH		
PI	H								
 cyanides { [•] salts of hydrogen cyanide y exception of complex cyanides such as for ferricyanides and mercuric oxycyanide ar specified elsewhere in this Annex } 	with the errocyanides, nd those	<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
006-007-00-5									
30 pnenoi	08.05.2	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
p04-001-00-2 203-032-1 1(00-30-2					Total:	0.0798 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 $\,$ Only the metal concentration has been used for classification $\,$

Classification of sample: WS5[0.5m]

Sample details

Sample Name:	LoW Code:	
WS5[0.5m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15.1%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 15.1% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		20 mg/k	1.32	22.942 mg/kg	0.00229 %	\checkmark	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<1 mg/k	1.285	<1.285 mg/kg	<0.0001 %		<lod< th=""></lod<>
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		96 mg/k	1.252	104.405 mg/kg	0.0104 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide }		20 mg/k	1.462	25.396 mg/kg	0.00254 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg/k	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	829 mg/k	3	720.243 mg/kg	0.072 %	~	
7	4	mercury { mercury dichloride }		<1 mg/k	1.353	<1.353 mg/kg	<0.000135 %		<lod< th=""></lod<>
		080-010-00-X 231-299-8 7487-94-7							
8	~	028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	38 mg/k	1.579	52.147 mg/kg	0.00521 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/k	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
10	4	zinc { zinc oxide }	_	<1 mg/k	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
<u> </u>	æ	030-013-00-7 215-222-5 [1314-13-2 boron { diboron trioxide: boric oxide }							
11	~	005-008-00-8 215-125-8 1303-86-2		120 mg/k	3.22	335.695 mg/kg	0.0336 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.046 mg/k	9	0.04 mg/kg	0.000004 %	\checkmark	
13	0	acenaphthylene 205-917-1 208-96-8		0.044 mg/k	9	0.0382 mg/kg	0.00000382 %	\checkmark	

#		Determinand	Note	User entered data	Conv	v. Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP					MC	
14	8	acenaphthene		0.029 mg/k	g	0.0252 mg/kg	0.00000252 %	1	
		201-469-6 83-32-9						-	
15	8	11uorene		0.04 mg/k	g	0.0348 mg/kg	0.00000348 %	\checkmark	
	_	phenanthrene			-				
16	9	201-581-5 85-01-8		0.68 mg/k	g	0.591 mg/kg	0.0000591 %	\checkmark	
17		anthracene		0.175		0.150 mg//ra	0.0000152.9/	,	
17		204-371-1 120-12-7		0.175 mg/k	g	0.152 mg/kg	0.0000152 %	V	
18		fluoranthene		1 136 mg/k	n	0.987 mg/kg	0 0000987 %	./	
		205-912-4 206-44-0			9		0.0000001 //	ľ	
19	Θ	pyrene		0.801 mg/k	g	0.696 mg/kg	0.0000696 %	\checkmark	
<u> </u>		204-927-3 129-00-0							
20		benzolajanthracene		0.257 mg/k	g	0.223 mg/kg	0.0000223 %	\checkmark	
-		obrysene			-		0.0000494 %	-	
21		601-048-00-0 205-923-4 218-01-9		0.569 mg/kg	g	0.494 mg/kg		\checkmark	
		benzo[a]pyrene; benzo[def]chrysene							
22		601-032-00-3 200-028-5 50-32-8		0.428 mg/k	g	0.372 mg/kg	0.0000372 %	V	
23	indeno[123-cd]pyrene			0.278 mg/k		0.242 mg/kg	0.0000242.%	./	
23		205-893-2 193-39-5		0.276 119/K		0.242 1119/Kg	0.0000242 /8	~	
24		dibenz[a,h]anthracene		0.16 ma/k	r	0.139 ma/kc	0.0000139 %	1	
		601-041-00-2 200-181-8 53-70-3						ľ	
25	benzo[ghi]perylene			0.279 mg/k	ng/kg	0.242 mg/kg	0.0000242 %	\checkmark	
		205-883-8 191-24-2							
26				0.751 mg/k	g	0.652 mg/kg	0.0000652 %	\checkmark	
		henzo[k]fluoranthene							
27		601-036-00-5 205-916-6 207-08-9		0.751 mg/k	g	0.652 mg/kg	0.0000652 %	\checkmark	
00	8	pH		0.54		0.54	0.54 -11		
28		PH		8.51 PH		8.51 pH	8.51 pH		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/k	g 1.88	4 <1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
30		phenol		<0.01 mg//	~	<0.01 ma//c	<0.000001.9/	ĺ	
30		604-001-00-2 203-632-7 108-95-2		<0.01 mg/k	9	<0.01 mg/kg	<0.000001 %		<lud< th=""></lud<>
						Total	0.127 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 $\,$ Only the metal concentration has been used for classification $\,$

Classification of sample: WS5[2m]

Sample details

Sample Name: WS5[2m] Sample Depth: 2.00 m Moisture content: 23.1% dry weight correction)	LoW Code: Chapter: Entry:	 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 03 * (Soil and stones containing hazardous substances)

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1A; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex (worst case): (Note 1 conc.: 0.184%)

HP 14: Ecotoxic "waste which presents or may present immediate or delayed risks for one or more sectors of the environment"

Hazard Statements hit:

Aquatic Chronic 1; H410 "Very toxic to aquatic life with long lasting effects."

Because of determinands:

copper(II) oxide: (compound conc.: 0.12%)

lead compounds with the exception of those specified elsewhere in this Annex (worst case): (Note 1 conc.: 0.184%)

Determinands

Moisture content: 23.1% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tri	<mark>ioxide</mark> }	<u>I</u>		31 ma/ka	1.32	33 249 ma/ka	0 00332 %		
		033-003-00-0	215-481-4	1327-53-3				0012 10 mg/ng	0100002 /0	v	
2	4	cadmium {	<mark>n sulfide</mark> }		1	1 mg/kg	1.285	1.044 mg/kg	0.0000812 %	1	
		048-010-00-4	215-147-8	1306-23-6							
3	4	copper {	oxide }			1179 mg/kg	1.252	1198.899 mg/kg	0.12 %	7	
		029-016-00-6	215-269-1	1317-38-0			Į			Ľ	
4	~	chromium in chrom <mark>oxide</mark> }	ium(III) compounds	{ [•] chromium(III)		37 mg/kg	1.462	43.93 mg/kg	0.00439 %	~	
			215-160-9	1308-38-9							
	æ	chromium in chrom	ium(VI) compounds	{							
5	-	oxide }				<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0							
6	4	lead { <pre> lead comp specified elsewhere </pre>	oounds with the exc e in this Annex (wor	eption of those st case) }	1	2263 mg/kg		1838.343 mg/kg	0.184 %	~	
		082-001-00-6									
7	ai a	mercury { mercury	dichloride }			<1 ma/ka	1 353	<1.353 mg/kg	<0.000135 %		<1 OD
Ľ		080-010-00-X	231-299-8	7487-94-7				ing/ig			

www.hazwasteonline.com

#			Determinand	CAS Number	P Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
			Lo Number	CAO Number	5							ĕ	
8	4	nickel { nickel dihy 028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		48	mg/kg	1.579	61.589	mg/kg	0.00616 %	~	
9	4	selenium { <mark>seleniu</mark> cadmium sulphose in this Annex }	m compounds with elenide and those sp	the exception of becified elsewhere		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
		034-002-00-8			-								
10	44	ZINC { ZINC OXIDE }	015 000 5	121/ 12 2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
-		boron { diboron trie	oxide: boric oxide }	1314-13-2	+								
11	•••	005-008-00-8	215-125-8	1303-86-2		296	mg/kg	3.22	774.235	mg/kg	0.0774 %	\checkmark	
12		naphthalene	<u>.</u>			0.051	ma/ka		0.0414	ma/ka	0 00000414 %	,	
		601-052-00-2	202-049-5	91-20-3		0.001	iiig/kg		0.0414	iiig/kg	0.00000414 /8	~	
13	Θ	acenaphthylene				0.013	mg/kg		0.0106	mg/kg	0.00000106 %	\checkmark	
			205-917-1	208-96-8	-								
14	Θ	acenaphthene	001 460 6	62.22.0	_	0.031	mg/kg		0.0252	mg/kg	0.00000252 %	\checkmark	
	_	fluorene	201-409-0	03-32-9	+								
15	۲		201-695-5	86-73-7		0.018	mg/kg		0.0146	mg/kg	0.00000146 %	\checkmark	
40		phenanthrene				0.000			0.005		0.000005.0/	,	
16		·	201-581-5	85-01-8		0.326	тд/кд		0.265	тg/кg	0.0000265 %	\checkmark	
17	0	anthracene				0.093	ma/ka		0.0755	ma/ka	0.00000755 %	1	
			204-371-1	120-12-7								•	
18	۲	fluoranthene	005 040 4	boc 44.0		0.41	mg/kg		0.333	mg/kg	0.0000333 %	\checkmark	
<u> </u>		pyrene	205-912-4	206-44-0	+								
19	۲	ругене	204-927-3	129-00-0		0.364	mg/kg		0.296	mg/kg	0.0000296 %	\checkmark	
	-	benzo[a]anthracer	le	120 00 0		0.400							
20		601-033-00-9	200-280-6	56-55-3		0.182	mg/кg		0.148	mg/кg	0.0000148 %	\checkmark	
21		chrysene 601-048-00-0	205-923-4	218-01-9		0.399	mg/kg		0.324	mg/kg	0.0000324 %	\checkmark	
22		benzo[a]pyrene; b	enzo[def]chrysene	1		0.406	ma/ka		0.33	ma/ka	0 000033 %	,	
		601-032-00-3	200-028-5	50-32-8		0.400	iiig/kg		0.55	iiig/kg	0.000033 /8	~	
23	0	indeno[123-cd]pyr	ene			0.434	mg/kg		0.353	mg/kg	0.0000353 %	\checkmark	
			205-893-2	193-39-5								_	
24		dibenz[a,h]anthrac	boo 191 9	62 70 2		0.22	mg/kg		0.179	mg/kg	0.0000179 %	\checkmark	
-		benzolahilpervlen	e	p-10-0	+								
25	3	1.0.100.000	205-883-8	191-24-2		0.429	mg/kg		0.348	mg/kg	0.0000348 %	\checkmark	
26		coronene				0 196	ma/ka		0 150	ma/ka	0 0000159 %	./	
			205-881-7	191-07-1	1_	0.130			0.100		0.0000109 /0	×	
27		benzo[b]fluoranthe	ene			0.796	mg/kg		0.647	mg/kg	0.0000647 %	\checkmark	
<u> </u>	-	601-034-00-4	205-911-9	205-99-2	+								
28		601-036-00-5	205-916-6	207-08-9		0.796	mg/kg		0.647	mg/kg	0.0000647 %	\checkmark	
		benzene			+						0.000004.04		
29		601-020-00-8	200-753-7	71-43-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
30		toluene 601-021-00-3	203-625-9	108-88-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
		xylene	ļ	1									
31		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
32		ethylbenzene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
		601-023-00-4	202-849-4	100-41-4		<u><u></u></u>			NO.01	iiig/ikg			
33	۲	polychlorobipheny	Is; PCB	4000 00 -		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< th=""></lod<>
\vdash	-	р02-039-00-4	215-648-1	1336-36-3	+								
34	8			PH		8.32	рН		8.32	pН	8.32 pH		
	1	1	1	r · ·	_								

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
35	\$	cyanides { [•] salts of exception of comple ferricyanides and m specified elsewhere 006-007-00-5	of hydrogen cyanide ex cyanides such as ercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
36		phenol 604-001-00-2	203-632-7	108-95-2	_	<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< th=""></lod<>
					,			Total:	0.396 %		

,

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS5[5m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	47. Construction and Damalities Wester (including supervised as it
wssismj	Chapter:	17: Construction and Demolition wastes (including excavated soli
Sample Depth:		from contaminated sites)
5.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19.7%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19.7% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC	erminand Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	1.4	1227 52 3		9	mg/kg	1.32	9.927	mg/kg	0.000993 %	\checkmark	
2	4	cadmium { cadmium sulfide 048-010-00-4 215-147	e } 7-8	1306-23-6	1	<1	mg/kg	1.285	<1.285	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	copper { copper(II) oxide } 029-016-00-6 215-269	9-1	1317-38-0		10	mg/kg	1.252	10.458	mg/kg	0.00105 %	\checkmark	
4	4	chromium in chromium(III) oxide }	compounds	{ • chromium(III)		16	mg/kg	1.462	19.536	mg/kg	0.00195 %	~	
5	4	chromium in chromium(VI) oxide } 024-001-00-0 215-607	compounds	{ chromium(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compounds v specified elsewhere in this	with the exce Annex (wor	eption of those st case) }	1	99	mg/kg		82.707	mg/kg	0.00827 %	~	
7	4	mercury { mercury dichlorid 080-010-00-X 231-299	<mark>de</mark> } 9-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008 234-348	3-5 [1] 3-1 [2]	12054-48-7 [1] 11113-74-9 [2]		9	mg/kg	1.579	11.876	mg/kg	0.00119 %	~	
9	4	selenium { selenium compo cadmium sulphoselenide a in this Annex }	ounds with th nd those sp	ne exception of ecified elsewhere		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	2-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; bo 005-008-00-8 215-125	o <mark>ric oxide</mark> } 5-8	1303-86-2		42	mg/kg	3.22	112.978	mg/kg	0.0113 %	\checkmark	
12		naphthalene 601-052-00-2 202-049	9-5	91-20-3		0.077	mg/kg		0.0643	mg/kg	0.00000643 %	\checkmark	
13	۲	acenaphthylene 205-917	7-1	208-96-8		0.021	mg/kg		0.0175	mg/kg	0.00000175 %	\checkmark	

#		Determinand	Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLF					MC	
14	0	acenaphthene		0.045 mg/kg	1	0.0376 mg/kg	0.00000376 %	1	
		201-469-6 83-32-9	-					<u> </u>	
15	۲	fluorene		0.122 mg/kg	1	0.102 mg/kg	0.0000102 %	\checkmark	
		201-695-5 86-73-7	-						
16	•	b01-581-5 85-01-8	-	0.554 mg/kg	1	0.463 mg/kg	0.0000463 %	\checkmark	
		anthracene	-						
17		204-371-1 120-12-7	-	0.248 mg/kg	1	0.207 mg/kg	0.0000207 %	\checkmark	
		fluoranthene		0.550 //		0.400 //	0.0000.100.0/		
18		205-912-4 206-44-0		0.553 mg/kg	1	0.462 mg/kg	0.0000462 %	\checkmark	
19	٥	pyrene		0.411 mg/kg		0.343 ma/ka	0 0000343 %	,	
13		204-927-3 129-00-0		0.411 Ing/i('	0.040 mg/kg	0.0000040 //	~	
20		benzo[a]anthracene		0.154 mg/kg	1	0.129 mg/kg	0.0000129 %	1	
		601-033-00-9 200-280-6 56-55-3			<u> </u>				
21		chrysene	_	0.375 mg/kg	1	0.313 mg/kg	0.0000313 %	\checkmark	
		601-048-00-0 205-923-4 218-01-9	-						
22		benzolajpyrene; benzolderjchrysene	_	0.213 mg/kg	1	0.178 mg/kg	0.0000178 %	\checkmark	
		indepo[122.cd]pvropo	+						
23		205-893-2 193-39-5	-	0.122 mg/kg	1	0.102 mg/kg	0.0000102 %	\checkmark	
		dibenzía hlanthracene							
24		601-041-00-2 200-181-8 53-70-3		0.091 mg/kg	1	0.076 mg/kg	0.0000076 %	\checkmark	
05		benzo[ghi]perylene		0.407		0.400	0.0000100.0/	,	
25		205-883-8 191-24-2	1	0.127 mg/kų	9	0.106 mg/kg	0.0000106 %	~	
26		benzo[b]fluoranthene		0.339 ma/ka	1	0.283 ma/ka	0 0000283 %	./	
		601-034-00-4 205-911-9 205-99-2	1		'			×.	
27		benzo[k]fluoranthene		0.339 mg/kg	1	0.283 mg/kg	0.0000283 %	1	
		601-036-00-5 205-916-6 207-08-9	_					-	
28	۲	pH	_	8.41 pH		8.41 pH	8.41 pH		
		PH							
29	~	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kợ	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5							
30		phenol		<0.01 mg/kg	1	<0.01 ma/ka	<0.000001 %		<lod< th=""></lod<>
		604-001-00-2 203-632-7 108-95-2			,	ing/kg			
						Total:	0.0259 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS6[1m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Hazard properties

None identified

Determinands

Moisture content: 33.5% Dry Weight Moisture Correction applied (MC)

#		Determin CLP index number EC Nun	nand Der CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	1327-53-3		35	mg/kg	1.32	34.615	mg/kg	0.00346 %	√	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8	1306-23-6	1	<1	mg/kg	1.285	<1.285	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1	1317-38-0		66	mg/kg	1.252	61.886	mg/kg	0.00619 %	\checkmark	
4	4	chromium in chromium(III) com oxide }	pounds { Chromium(III)		33	mg/kg	1.462	36.128	mg/kg	0.00361 %	~	
5	4	chromium in chromium(VI) con oxide } 024-001-00-0 215-607-8	pounds { chromium(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { • lead compounds with specified elsewhere in this Ann	the exception of those ex (worst case) }	1	606	mg/kg		453.933	mg/kg	0.0454 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [234-348-1 [1] 12054-48-7 [1] 2] 11113-74-9 [2]		66	mg/kg	1.579	78.088	mg/kg	0.00781 %	~	
9	4	selenium { selenium compound cadmium sulphoselenide and t in this Annex }	Is with the exception of hose specified elsewhere		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; boric c 005-008-00-8 215-125-8	xide }		142	mg/kg	3.22	342.489	mg/kg	0.0342 %	~	
12		naphthalene 601-052-00-2 202-049-5	91-20-3		0.055	mg/kg		0.0412	mg/kg	0.00000412 %	\checkmark	
13		acenaphthylene 205-917-1	208-96-8		0.024	mg/kg		0.018	mg/kg	0.0000018 %	\checkmark	

#		Determinand	Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CA	S Number							МС	
14	8	acenaphthene		0.035	ma/ka		0.0262	ma/ka	0.00000262 %	1	
		201-469-6 83-32-	9							ľ	
15	0	fluorene		0.024	mg/kg		0.018	mg/kg	0.0000018 %	\checkmark	
		201-695-5 86-73-	7								
16	۲	phenanthrene		0.327	mg/kg		0.245	mg/kg	0.0000245 %	\checkmark	
		201-581-5 85-01-	8								
17	۲	anthracene		0.09	mg/kg		0.0674	mg/kg	0.00000674 %	\checkmark	
		204-371-1 120-12	2-7							-	
18	۲	fluoranthene		0.281	mg/kg		0.21	mg/kg	0.000021 %	\checkmark	
		205-912-4 206-44	-0								
19	Θ	pyrene		0.251	mg/kg		0.188	mg/kg	0.0000188 %	\checkmark	
		204-927-3 129-00)-0								
20	benzo[a]anthracene		0.503	mg/kg		0.377 mg/kg 0.0000377 %	\checkmark				
		601-033-00-9 200-280-6 56-55-	3								
21		chrysene		0.34	mg/kg		0.255	mg/kg	0.0000255 %	1	
		601-048-00-0 205-923-4 218-01	-9							·	
22		benzo[a]pyrene; benzo[def]chrysene		0.277	ma/ka		0.207	ma/ka	0.0000207 %	1	
		601-032-00-3 200-028-5 50-32-	8	_						·	
23	0	indeno[123-cd]pyrene		0.272	ma/ka		0.204	ma/ka	0.0000204 %	1	
		205-893-2 193-39-5		-						Ň	
24		dibenz[a,h]anthracene		0,186	ma/ka		0.139	ma/ka	0.0000139 %	1	
		601-041-00-2 200-181-8 53-70-	3	0.100	iiig/kg					ľ	
25	0	benzo[ghi]perylene		0 247	ma/ka		0 185 mg/k	ma/ka	0.0000185 %	1	
20		205-883-8 191-24	-2	0.2 11	ing/kg			ing/kg		Ň	
26		benzo[b]fluoranthene		0.535	ma/ka		0 401	ma/ka	0 0000401 %	./	
		601-034-00-4 205-911-9 205-99)-2	0.000						ľ	
27		benzo[k]fluoranthene		0.535	ma/ka		0 401	ma/ka	0 0000401 %	./	
		601-036-00-5 205-916-6 207-08	3-9	0.000						Ň	
28	0	рН		8.66	nН		8 66	nН	8 66 pH		
20		PH		0.00	pri		0.00	pri	0.00 pr		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferror ferricyanides and mercuric oxycyanide and the specified elsewhere in this Annex }	he yanides, ose	<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
20		phenol		-0.01	mc//		10.01	mc//	-0.00004.0/		
30		604-001-00-2 203-632-7 108-95	5-2	<0.01	тg/кg		<0.01	mg/kg	<0.000001 %		<lud< th=""></lud<>
		, L	I					Total:	0.102 %	Γ	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS6[4m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS6[4m]	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
4.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
21%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 21% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		13 mg/kg	1.32	14.185 mg/kg	0.00142 %	\checkmark	
2	*	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<1 mg/kg	1.285	<1.285 mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		22 mg/kg	1.252	22.76 mg/kg	0.00228 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide }		12 mg/kg	1.462	14.495 mg/kg	0.00145 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	125 mg/kg		103.306 mg/kg	0.0103 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		11 mg/kg	1.579	14.359 mg/kg	0.00144 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		59 mg/kg	3.22	157.002 mg/kg	0.0157 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.055 mg/kg		0.0455 mg/kg	0.00000455 %	\checkmark	
13	8	acenaphthylene 205-917-1 208-96-8		0.013 mg/kg		0.0107 mg/kg	0.00000107 %	\checkmark	

#		CI P index number	Determinand	CAS Number	P Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
14	0	acenaphthene	bo1 460 6		<u>ರ</u>	0.035	mg/kg		0.0289	mg/kg	0.00000289 %	V	
15	0	fluorene	201-695-5	86-73-7		0.077	mg/kg		0.0636	mg/kg	0.00000636 %	\checkmark	
16	8	phenanthrene				0.363	mg/kg		0.3	mg/kg	0.00003 %	\checkmark	
17	8	anthracene	201-581-5	85-01-8		0.121			0.109		0.0000108.0/	,	
		fl	204-371-1	120-12-7		0.131	тід/кд		0.108	тід/кд	0.0000108 %	~	
18	۵	nuorantnene	205-912-4	206-44-0		0.454	mg/kg		0.375	mg/kg	0.0000375 %	\checkmark	
19	0	pyrene	204-927-3	129-00-0	_	0.318	mg/kg		0.263	mg/kg	0.0000263 %	\checkmark	
20		benzo[a]anthracen	ie	50.55.0		0.298	mg/kg		0.246	mg/kg	0.0000246 %	\checkmark	
21		chrysene	200-280-6	56-55-3		0.196			0.454		0.0000454.8/	,	
21		601-048-00-0	205-923-4	218-01-9		0.180	тід/кд		0.154	тід/кд	0.0000154 %	\checkmark	
22		benzo[a]pyrene; be	enzo[def]chrysene			0.124	mg/kg		0.102	mg/kg	0.0000102 %	\checkmark	
		601-032-00-3	200-028-5	50-32-8	-								
23	8		205-893-2	193-39-5		0.077	mg/kg		0.0636	mg/kg	0.00000636 %	\checkmark	
24		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		0.04	mg/kg		0.0331	mg/kg	0.00000331 %	\checkmark	
25	8	benzo[ghi]perylene	e	404.04.0		0.079	mg/kg		0.0653	mg/kg	0.00000653 %	\checkmark	
		coronene	205-883-8	191-24-2									
26			205-881-7	191-07-1		0.04	mg/kg		0.0331	mg/kg	0.00000331 %	\checkmark	
27		benzo[b]fluoranthe	ene	205 00 2	_	0.218	mg/kg		0.18	mg/kg	0.000018 %	\checkmark	
		benzo[k]fluoranthe	205-911-9	205-99-2	-								
28		601-036-00-5	205-916-6	207-08-9	-	0.218	mg/kg		0.18	mg/kg	0.000018 %	\checkmark	
29		benzene	1			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2]								
30		toluene 601-021-00-3	203-625-9	108-88-3	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		xylene											
31		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32	8	ethylbenzene	baa a.ta :	400.44.4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
<u> </u>	_	pu1-023-00-4	202-849-4	100-41-4	+							-	
33	۵	602-039-00-4	215-648-1	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
34	Θ	рН		PH		8.04	pН		8.04	pН	8.04 pH		
35	4	cyanides { salts exception of compl ferricyanides and r specified elsewher	of hydrogen cyanid lex cyanides such a mercuric oxycyanide e in this Annex }	e with the s ferrocyanides, e and those		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
<u> </u>		006-007-00-5			_							_	
36	8	ι - Π (υο το υ40) p		TPH		2	mg/kg		1.653	mg/kg	0.000165 %	\checkmark	
37		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
38		phenol 604-001-00-2	203-632-7	108-95-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			1							Total:	0.0338 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration low.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00016%)

Classification of sample: WS7[1m]

Sample details

Sample Name:	LoW Code:	
WS7[1m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
10.9%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 10.9% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number CAS	Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	AC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53	3-3		11 mg/kg	1.32	13.096 mg/kg	0.00131 %	<	
2	4	cadmium {	3-6	1	2 mg/kg	1.285	2.318 mg/kg	0.00018 %	\checkmark	
3	4	copper {	8-0		31 mg/kg	1.252	34.991 mg/kg	0.0035 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chronium (III) compounds { Chronic chroho chronic chronic chronic chronic chronic chronic chroni	omium(III) 3-9		17 mg/kg	1.462	22.404 mg/kg	0.00224 %	~	
5	4	chromium in chromium(VI) compounds {	nium(VI)		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { lead compounds with the exception of specified elsewhere in this Annex (worst case)	those }	1	109 mg/kg		98.287 mg/kg	0.00983 %	~	
7	4	mercury { mercury dichloride }	-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< th=""></lod<>
8	~	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-4 234-348-1 [2] 11113-7	8-7 [1] '4-9 [2]		45 mg/kg	1.579	64.092 mg/kg	0.00641 %	~	
9	4	selenium { selenium compounds with the except cadmium sulphoselenide and those specified e in this Annex } 034-002-00-8	otion of Isewhere		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
10	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	3-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
11	~	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86	6-2		96 mg/kg	3.22	278.727 mg/kg	0.0279 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3			<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	9	acenaphthylene 205-917-1 208-96-	8		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>

#		Determinand		User entered data		Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP							
14	0	acenaphthene		<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
		201-469-6 83-32-9			5 5					
15	Θ	fluorene		<1	ma/ka		<1 ma/ka	<0.0001 %		<lod< td=""></lod<>
		201-695-5 86-73-7								
16	0	phenanthrene		-1	ma/ka		<1 ma/ka	<0.0001 %		<1.0D
		201-581-5 85-01-8								
17	۲	anthracene		-1	ma/ka		<1 ma/ka	~0.0001 %		<1.0D
<u> </u>		204-371-1 120-12-7			ing/kg			<0.0001 /0		LOD
10	0	fluoranthene		-1	ma/ka		<1 mg/kg	<0.0001 %		
10		205-912-4 206-44-0	1	st ing/isg			<0.0001 /0		LOD	
10		pyrene		-1	ma/ka		-1 ma/ka	g <0.0001 %		
19		204-927-3 129-00-0	1	<1	тту/ку					<lod< td=""></lod<>
20		benzo[a]anthracene		.1			-1 mg/kg -0.0001.%		1	
20		601-033-00-9 200-280-6 56-55-3		<1	тід/кд		<i kg<="" mg="" td=""><td><0.0001 %</td><td></td><td><lod< td=""></lod<></td></i>	<0.0001 %		<lod< td=""></lod<>
24		chrysene		.1			.1	10 0001 0/	1	
21		601-048-00-0 205-923-4 218-01-9		<1	тід/кд		<i kg<="" mg="" td=""><td><0.0001 %</td><td></td><td><lod< td=""></lod<></td></i>	<0.0001 %		<lod< td=""></lod<>
22		benzo[a]pyrene; benzo[def]chrysene						0.0004.0/	i –	1.00
		601-032-00-3 200-028-5 50-32-8		<1	mg/кg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
		indeno[123-cd]pvrene							i –	
23	-	205-893-2 193-39-5	-	<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene						0.0004.0/	i –	
24		601-041-00-2 200-181-8 53-70-3	-	<1 mg/k	mg/kg		<1 mg/kg	g <0.0001 %		<lod< td=""></lod<>
									1	
25	Ŭ	205-883-8 191-24-2	-	<1 mg/kg	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
		benzo[b]fluoranthene							t –	
26		601-034-00-4 205-911-9 205-99-2	-	<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
		benzo[k]fluoranthene	+						t-	
27		601-036-00-5 205-916-6 207-08-9	-	<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
		pH	+						t-	
28		PH	-	8.13	рН		8.13 pH	8.13 pH		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
		phenol	1	0.01			0.04		Î	1.00
30		604-001-00-2 203-632-7 108-95-2	+	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
				1			Total	0.0537 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 $\,$ Only the metal concentration has been used for classification $\,$

Classification of sample: WS7[3m]

Sample details

Sample Name:	LoW Code:	
WS7[3m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
22.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 22.5% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	AC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		19 mg/kg	1.32	20.479 mg/kg	0.00205 %	~	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	_ 1	1 mg/kg	1.285	1.049 mg/kg	0.0000816 %	\checkmark	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0	_	89 mg/kg	1.252	90.945 mg/kg	0.00909 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide }		21 mg/kg	1.462	25.055 mg/kg	0.00251 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 [215-607-8 [1333-82-0		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	739 mg/kg		603.265 mg/kg	0.0603 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		16 mg/kg	1.353	17.678 mg/kg	0.00177 %	~	
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		47 mg/kg	1.579	60.601 mg/kg	0.00606 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
10	-4	zinc { <mark>zinc oxide</mark> } 030-013-00-7		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2	-	122 mg/kg	3.22	320.674 mg/kg	0.0321 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	۵	acenaphthylene 205-917-1 208-96-8		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>

#			Determinand		P Note	User entered data		Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLF						MC	
14	8	acenaphthene				<1	mg/kg		<1 mg	(q <0.0001 %		<lod< td=""></lod<>
			201-469-6	83-32-9							_	
15	۲	fluorene		00 70 7		<1	mg/kg		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
-		phononthrono	201-695-5	86-73-7							-	
16	۲	phenantinene	201-581-5	85-01-8	-	<1	mg/kg		<1 mg.	<g %<="" <0.0001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
17	0	anthracene	204-371-1	120-12-7		<1	mg/kg		<1 mg.	<g %<="" <0.0001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
18		fluoranthene		3		<1	mg/kg		<1 mg	<q %<="" <0.0001="" p=""></q>		<lod< td=""></lod<>
			205-912-4	206-44-0							_	
19	۲	pyrene	004 007 0	400.00.0		<1	mg/kg		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
		hanzalalanthraaan	204-927-3	129-00-0							-	
20		benzolajanthracen		E6 EE 2		<1	mg/kg		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
		chrysene	200-280-0	00-00-0	+						-	
21		601-048-00-0	205-923-4	218-01-9	-	<1	mg/kg		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
		benzolalpyrene: be	enzoldeflchrvsene	210 01 0					 		1	
22		601-032-00-3	200-028-5	50-32-8	-	<1	mg/kg		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
22		indeno[123-cd]pyre	ene	1		-1	malka		-1 mg	(70.0001.9/	1	
23		205-893-2 193-39-5				<1	тід/кд		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
24		dibenz[a,h]anthrac	ene			<1	ma/ka		<1 ma	 <0 0001 % 		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3			ing/ng					~
25	0	benzo[ghi]perylene	•			<1	mg/kg		<1 mg	(q <0.0001 %		<lod< td=""></lod<>
			205-883-8	191-24-2								
26		benzo[b]fluoranthe	ne	005.00.0		<1	mg/kg		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
-		601-034-00-4	205-911-9	205-99-2	-						-	
27				007.08.0		<1	mg/kg		<1 mg	kg <0.0001 %		<lod< td=""></lod<>
		benzene	203-910-0	201-00-3	+							
28		601-020-00-8	200-753-7	71-43-2		<0.01	mg/kg		<0.01 mg	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
		toluene	200.001			0.04			0.04	0.000004.0/		1.00
29		601-021-00-3	203-625-9	108-88-3		<0.01	mg/kg		<0.01 mg	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
		xylene										
30		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01 mg	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
31	0	ethylbenzene				<0.01	ma/ka		<0.01 ma	<q %<="" <0.000001="" p=""></q>		<lod< td=""></lod<>
L		601-023-00-4	202-849-4	100-41-4			59					
32	8	рН	1			7.71	pН		7.71 pH	7.71 pH		
-	-			РН	-						-	
33	4	cyanides { salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<1	mg/kg	1.884	<1.884 mg	<g %<="" <0.000188="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
-		UUG-UU7-UU-5			-							
34	۲			ТРН	-	<0.1	mg/kg		<0.1 mg	<g %<="" <0.00001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
35		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; /lpropane	1		<0.01	ma/ka		<0.01 ma	<q %<="" <0.000001="" p=""></q>		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			is in the the				0001 /0	<lud< td=""></lud<>
36		phenol 604-001-00-2	203-632-7	108-95-2		<0.01	mg/kg		<0.01 mg	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
									То	al: 0.116 %		1

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS7[5m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS7[5m] Sample Depth: 5.00 m Moisture content:	LoW Code: Chapter: Entry:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 13.8% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trio	xide }	1207 52 2		3 mg/kg	1.32	3.481 mg/kg	0.000348 %	\checkmark	
2	4	cadmium { cadmium	sulfide }	1306-23-6	1	1 mg/kg	1.285	1.129 mg/kg	0.0000879 %	\checkmark	
3	4	copper { copper(II) c 029-016-00-6 2	<mark>xide</mark> } 15-269-1	1317-38-0		19 mg/kg	1.252	20.9 mg/kg	0.00209 %	\checkmark	
4	4	chromium in chromiu oxide }	um(III) compounds	{ • chromium(III)		22 mg/kg	1.462	28.255 mg/kg	0.00283 %	~	
5	4	chromium in chromiu oxide } 024-001-00-0 2	um(VI) compounds	{ chromium(VI)		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead composite composit	ounds with the exce in this Annex (wors	eption of those st case) }	1	24 mg/kg		21.09 mg/kg	0.00211 %	~	
7	4	mercury { mercury d 080-010-00-X 2	<mark>lichloride</mark> } 31-299-8	7487-94-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { <mark>nickel dihydr</mark> 028-008-00-X 2 2	oxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		35 mg/kg	1.579	48.579 mg/kg	0.00486 %	~	
9	4	selenium { selenium cadmium sulphosele in this Annex }	compounds with the spirate spi	ne exception of ecified elsewhere		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	15-222-5	1314-13-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron triox 005-008-00-8 2	ide; boric oxide }	1303-86-2		70 mg/kg	3.22	198.059 mg/kg	0.0198 %	\checkmark	
12		naphthalene 601-052-00-2 2	02-049-5	91-20-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13	۵	acenaphthylene	205-917-1	208-96-8		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>

#		Determinand	Note	User entered	User entered data		User entered data Conv. Factor		Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC /			
14	8	acenaphthene		<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>		
		201-469-6 83-32-9										
15	Θ	fluorene		<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>		
		201-695-5 86-73-7	-									
16	Θ	201-581-5 85-01-8		<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
47	0	anthracene						0.0001.0/		1.05		
17		204-371-1 120-12-7		<1	mg/кg		<1 mg/кg	<0.0001 %		<lod< td=""></lod<>		
10	8	fluoranthene		-1	malka		-1 ma/ka	-0.0001.9/				
10		205-912-4 206-44-0		<1	шу/ку		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
19	8	pyrene		<1	ma/ka		<1 ma/ka	<0.0001 %				
10		204-927-3 129-00-0			ing/kg					.200		
20		benzo[a]anthracene		<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
		601-033-00-9 200-280-6 56-55-3										
21		chrysene	_	<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
		601-048-00-0 205-923-4 218-01-9	-									
22		benzolajpyrene; benzolderjchrysene		<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
		601-032-00-3 200-028-5 50-32-8	_									
23	Indeno[123-cd]pyrene 205-893-2 193-39-5		_	<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
	dihenz[a h]anthracene		-									
24		601 041 00 2 000 181 8 53 70 3	_	<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
		benzolabilhervlene	-		mg/kg							
25	۲	205-883-8 191-24-2	$\left \right $	<1		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>			
		benzo[b]fluoranthene										
26		601-034-00-4 205-911-9 205-99-2	-	<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
27		benzo[k]fluoranthene		.1				-0.0001.0/				
21		601-036-00-5 205-916-6 207-08-9	-	<1	тід/кд		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>		
28	8	pH		8.65	nH		8.65 pH	8 65 nH				
20		PH		0.00	рп		0.00 pm	0.00 pm				
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>		
\vdash		nhenol							\vdash			
30		604-001-00-2 203-632-7 108-95-2	-	<0.01	mg/kg		<0.01 mg/kg	<0.000001 %		<lod< th=""></lod<>		
			1				Total:	0.0344 %	۲			

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS8[2m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS8[2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
25.2%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 25.2% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trio	xide }	1227 52 2		26	mg/kg	1.32	27.419	mg/kg	0.00274 %	~	
2	4	cadmium { cadmium 048-010-00-4 21	sulfide } 15-147-8	1306-23-6	1	1	mg/kg	1.285	1.027	mg/kg	0.0000799 %	√	
3	4	copper { copper(II) ox 029-016-00-6 21	xide }	1317-38-0		544	mg/kg	1.252	543.903	mg/kg	0.0544 %	\checkmark	
4	4	chromium in chromiu oxide }	Im(III) compounds	{ [•] chromium(III)		15	mg/kg	1.462	17.511	mg/kg	0.00175 %	~	
5	4	chromium in chromiu oxide } 024-001-00-0 21	Im(VI) compounds	{ chromium(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { • lead compo	unds with the exce in this Annex (wors	ption of those st case) }	1	1118	mg/kg		892.971	mg/kg	0.0893 %	~	
7	4	mercury { mercury di	ichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4	nickel { <mark>nickel dihydro</mark> 028-008-00-X 23 23	5. 200 0 5. 2	12054-48-7 [1] 11113-74-9 [2]		40	mg/kg	1.579	50.463	mg/kg	0.00505 %	~	
9	4	selenium { selenium cadmium sulphoseler in this Annex }	compounds with th nide and those spe	ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	15-222-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxi 005-008-00-8 21	de; boric oxide } 15-125-8	1303-86-2		419	mg/kg	3.22	1077.579	mg/kg	0.108 %	\checkmark	
12		naphthalene 601-052-00-2 20	02-049-5	91-20-3		0.037	mg/kg		0.0296	mg/kg	0.00000296 %	\checkmark	
13	8	acenaphthylene	05-917-1	208-96-8		0.07	mg/kg		0.0559	mg/kg	0.00000559 %	\checkmark	

#		D	Determinand		o Note	User entered data		ser entered data Conv. Factor		conc.	Classification value	Applied	Conc. Not Used
		CLP index number E	EC Number	CAS Number	CL D							ВC	
14	۲	acenaphthene				0.034	mg/kg		0.0272	mg/kg	0.00000272 %	1	
		201-4	469-6	83-32-9								ľ	
15	۲	fluorene	005 5	00 70 7		0.049	mg/kg		0.0391	mg/kg	0.00000391 %	\checkmark	
		201-i	695-5	86-73-7	-								
16	۲	201-	581-5	85-01-8		0.352	mg/kg		0.281	mg/kg	0.0000281 %	\checkmark	
17		anthracene				0.086			0.0697		0.00000687.9/	,	
17		204-3	371-1	120-12-7		0.086	тg/кg		0.0687	тд/кд	0.00000687 %	\checkmark	
18	0	fluoranthene				0.179	ma/ka		0.143	ma/ka	0.0000143 %	1	
		205-9	912-4	206-44-0						5. 5		ľ	
19	۲	pyrene	007.0			0.19	mg/kg		0.152	mg/kg	0.0000152 %	\checkmark	
		204-	927-3	129-00-0									
20		601-033-00-9 200-	280-6	56-55-3		0.191	mg/kg		0.153	mg/kg	0.0000153 %	\checkmark	
		chrysene	200 0			0.000			0.400		0.0000400.00		
21		601-048-00-0 205-	923-4	218-01-9		0.229	mg/kg		0.183	mg/kg	0.0000183 %	\checkmark	
22		benzo[a]pyrene; benzo[o	def]chrysene			0.311	ma/ka		በ 248	ma/ka	0 0000248 %	./	
		601-032-00-3 200-0	028-5	50-32-8		0.011	iiig/kg		0.240	ing/itg	0.0000240 //	~	
23	0	indeno[123-cd]pyrene				0.297	mg/kg		0.237	mg/kg	0.0000237 %	\checkmark	
		205-8	893-2	193-39-5	-								
24		dibenzla, njantnracene	101 0	52 70 2		0.36	mg/kg		0.288	mg/kg	0.0000288 %	\checkmark	
		benzo[ahi]pervlene	101-0	55-70-5									
25		205-	883-8	191-24-2		0.548	mg/kg		0.438	mg/kg	0.0000438 %	\checkmark	
26		coronene				0 108	ma/ka		0 158	ma/ka	0 0000158 %	/	
20		205-	881-7	191-07-1		0.130	iiig/kg		0.150	mg/kg	0.0000130 /8	~	
27		benzo[b]fluoranthene	044.0			0.498	mg/kg		0.398	mg/kg	0.0000398 %	\checkmark	
		601-034-00-4 205-	911-9	205-99-2									
28		601-036-00-5 205-	916-6	207-08-9		0.498	mg/kg		0.398	mg/kg	0.0000398 %	\checkmark	
		benzene	0.00	20. 00 0		0.04			0.04		0.000004.0/		1.00
29		601-020-00-8 200-	753-7	71-43-2		<0.01	тід/кд		<0.01	тід/кд	<0.00001 %		<lud< td=""></lud<>
30		toluene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-021-00-3 203-0	625-9	108-88-3									
		xylene	100.0111										
31			-422-2 [1] -396-5 [2] -576-3 [3] -535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32	0	ethylbenzene				<0.01	mg/ka		<0.01	mg/ka	<0.000001 %		<lod< td=""></lod<>
		601-023-00-4 202-	849-4	100-41-4	_		5.5					\square	-
33	۲	polychlorobiphenyls; PC	649-1	1226 26 2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
\vdash	~	nH	0-10-1	1000-00-0	\vdash							\vdash	
34	-			PH	-	8.32	pН		8.32	pН	8.32 pH		
35	4	cyanides { salts of hy exception of complex cy ferricyanides and mercu specified elsewhere in tl 006-007-00-5	vdrogen cyanide vanides such as uric oxycyanide his Annex }	with the ferrocyanides, and those		<2.5	mg/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< th=""></lod<>
36	0	TPH (C6 to C40) petrole	eum group			3 11	ma/ka		2 484	ma/ka	0.000248 %	./	
				ТРН	1	0.11			2.707		5.000270 /0	ľ	
37		2-methoxy-2-methylprop	MTBE; pane 653-1	1634-04-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		pus-101-00-A ×10-055-1 [1034-04-4								Total:	0.262 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration very low. Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00024%)

Classification of sample: WS9[0.5m]

Sample details

Sample Name:	LoW Code:	
WS9[0.5m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
20.3%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 20.3% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		16 mg/kg	1.32	17.56 mg/kg	0.00176 %	\checkmark	
2	4	cadmium { cadmium sulfide }	1	1 mg/k	1.285	1.068 mg/kg	0.0000831 %	\checkmark	
3	4	copper { copper(II) oxide }		55 mg/kg	1.252	57.23 mg/kg	0.00572 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide }		20 mg/kg	1.462	24.299 mg/kg	0.00243 %	\checkmark	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg/k	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	236 mg/k	3	196.176 mg/kg	0.0196 %	~	
7	4	mercury { mercury dichloride }		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	25 mg/kg	1.579	32.824 mg/kg	0.00328 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	-	<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { zinc oxide }		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		116 mg/kg	3.22	310.479 mg/kg	0.031 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.21 mg/kg	9	0.175 mg/kg	0.0000175 %	\checkmark	
13	0	acenaphthylene 205-917-1 208-96-8		0.106 mg/kg	9	0.0881 mg/kg	0.00000881 %	\checkmark	

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	1C Applied	Conc. Not Used
		acenaphthene		1.00 "		1 000 //	0.0004.00.0/	2	
14		201-469-6 83-32-9		1.23 mg/kg	3	1.022 mg/kg	0.000102 %	\checkmark	
15		fluorene		0.662 mg/k		0.55 ma/ka	0.000055.%		
15		201-695-5 86-73-7		0.002 mg/kį	4	0.55 1119/kg	0.000033 /8	~	
16	8	phenanthrene		7 987 ma/ki	r	6.639 ma/ka	0 000664 %	./	
		201-581-5 85-01-8		1.501 mg/k	1	0.000 mg/kg	0.000004 /0	~	
17	0	anthracene		1 073 mg/kg	r	0.892 ma/ka	0 0000892 %	1	
		204-371-1 120-12-7			2			Ň	
18	0	fluoranthene		9.923 mg/kg	9	8.249 mg/kg	0.000825 %	\checkmark	
		205-912-4 206-44-0							
19	8	204-927-3 129-00-0		9.612 mg/kg	9	7.99 mg/kg	0.000799 %	\checkmark	
		benzolalanthracene							
20		601 033 00 0 200 280 6 56 55 3	-	4.413 mg/kg	9	3.668 mg/kg	0.000367 %	\checkmark	
\vdash		chrysene	+				0.000404.0/		
21		601-048-00-0 205-923-4 218-01-9	-	5.104 mg/kg	9	4.243 mg/kg	0.000424 %	\checkmark	
		benzo[a]pyrene: benzo[def]chrysene					0.000000.0/		
22		601-032-00-3 200-028-5 50-32-8		4.355 mg/kg	9	3.62 mg/kg	0.000362 %	\checkmark	
		indeno[123-cd]pyrene					0.000222.%		
23	-	205-893-2 193-39-5		2.67 mg/kg	9	2.219 mg/kg	0.000222 %	\checkmark	
24		dibenz[a,h]anthracene		0.407 ma//		1.776 maller	0.000170.0/		
24		601-041-00-2 200-181-8 53-70-3	1	2.137 mg/kg		1.776 mg/kg	0.000178 %	\checkmark	
25		benzo[ghi]perylene		2.446 mg/k		2 865 ma/ka	0.000286.%		
25		205-883-8 191-24-2		5.440 mg/kų	1	2.005 mg/kg	0.000200 %	\checkmark	
26		benzo[b]fluoranthene		7 529 mg/k	1	6 259 ma/ka	0 000626 %		
		601-034-00-4 205-911-9 205-99-2		1.020 mg/k		0.200 mg/kg	0.000020 //	Ň	
27		benzo[k]fluoranthene		7.529 ma/ka	2	6.259 ma/ka	0.000626 %		
		601-036-00-5 205-916-6 207-08-9	1					ľ	
28	Θ	рН		8.04 pH		8.04 pH	8.04 pH		
		PH		· · · · · · · · · · · · · · · · · · ·		· · · · ·			
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5 mg/kg	1.884	<4.71 mg/kg	<0.000471 %		<lod< th=""></lod<>
		000-001-00-0				Total	0.0704 %	\vdash	

×.

кеу	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
44	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS9[1m]

Sample details

Sample Name:	LoW Code:	
WS9[1m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
20.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 20.5% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number	CAS Number	LP Note	User entered data		Conv. Factor Compound conc.		Classification value	IC Applied	Conc. Not Used	
1	4	arsenic { arsenic trioxide }		с С	13	ma/ka	1.32	14,244	ma/ka	0.00142 %	2	
		033-003-00-0 215-481-4	1327-53-3								Ť	
2	4	cadmium {		1	1	ma/ka	1 285	1 067	ma/ka	0 000083 %	./	
_		048-010-00-4 215-147-8	1306-23-6	Ľ							Ň	
3	4	copper {			77	ma/ka	1 252	79 989	ma/ka	0 008 %	./	
Ľ		029-016-00-6 215-269-1	1317-38-0			iiig/itg	1.202	10.000	iig/itg	0.000 /0	Ň	
4	4	chromium in chromium(III) compounds oxide }	{ • chromium(III)		18	mg/kg	1.462	21.832	mg/kg	0.00218 %	\checkmark	
		215-160-9	1308-38-9									
5	4	chromium in chromium(VI) compounds { chromium(VI)			<0.1	ma/ka	1.923	<0.192	ma/ka	<0.0000192 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8	1333-82-0		-	5.5			5.5			-
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }		1	243	mg/kg		201.66	mg/kg	0.0202 %	~	
		082-001-00-6										
7	4	mercury { mercury dichloride }			1	mg/kg	1.353	1.123	mg/kg	0.000112 %	\checkmark	
		080-010-00-X 231-299-8	7487-94-7									
	4	nickel { nickel dihydroxide }		10		4 570	00 504	ma/ka	0.00000.0/	,		
0		028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		10	шу/ку	1.579	23.394	пу/ку	0.00230 %	\checkmark	
9	4	selenium { selenium compounds with t cadmium sulphoselenide and those sp in this Annex } 034-002-00-8	he exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
			<u>l</u>									
10	~	030-013-00-7 215-222-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
	æ	boron { diboron trioxide; boric oxide }	-		445		0.00	007.001		0.0007.0/		
11		005-008-00-8 215-125-8	1303-86-2		115	mg/кg	3.22	307.291	тg/кg	0.0307 %	\checkmark	
12		naphthalene			0.496	ma/ka		0 412	ma/ka	0 0000/12 %	,	
		601-052-00-2 202-049-5	91-20-3		0.430	ing/kg		0.412	ng/kg	0.0000412 /8	~	
13	۲	acenaphthylene			0.228	mg/kg		0.189	mg/kg	0.0000189 %	\checkmark	
		205-917-1	208-96-8								v	

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered	l data	Conv. Factor	Compound co	onc.	Classification value	IC Applied	Conc. Not Used
		acenaphthene	<u></u>							≥	
14		201-469-6 83-32-9		2.203	mg/kg		1.828	mg/kg	0.000183 %	\checkmark	
45		fluorene		4 004			4.045		0.000105.0/		
15		201-695-5 86-73-7		1.621	mg/кg		1.345	тg/кg	0.000135 %		
16		phenanthrene		20 569	ma/ka		17.060	malka	0.00171.9/		
10		201-581-5 85-01-8	1	20.506	тту/ку		17.009	тту/ку	0.00171 %		
17	۰	anthracene		2 30	ma/ka		1 083	ma/ka	0.000198 %		
		204-371-1 120-12-7		2.55	iiig/kg		1.303	iiig/kg	0.000130 /8	~	
18	۲	fluoranthene		20.578	mg/kg		17.077	mg/kg	0.00171 %	\checkmark	
		205-912-4 206-44-0	_								
19	۲	b04-927-3 129-00 0		18.2	mg/kg		15.104	mg/kg	0.00151 %	\checkmark	
	-	204-927-3 [129-00-0								$\left \right $	
20				8.172	mg/kg		6.782	mg/kg	0.000678 %	\checkmark	
		001-033-00-9 200-280-8 p0-33-3	+							\square	
21		601-048-00-0 205-923-4 218-01-9	-	8.739	mg/kg		7.252	mg/kg	0.000725 %	\checkmark	
22		benzolalovrene: benzoldefichrysene							0.000500.0/		
22		601-032-00-3 200-028-5 50-32-8	-	7.209	mg/kg		5.983	mg/kg	0.000598 %	\checkmark	
		indeno[123-cd]pyrene							0.000363.9/		
23	-	205-893-2 193-39-5	-	4.377	mg/kg		3.632	mg/kg	0.000363 %	\checkmark	
0.4		dibenz[a.h]anthracene		0.074	malka		2.045	malka	0.000001.0/		
24		601-041-00-2 200-181-8 53-70-3	-	3.874	mg/kg		3.215	mg/kg	0.000321 %	\checkmark	
25		benzo[ghi]perylene		5 605	ma/ka		4 651	malka	0.000465.9/		
25		205-883-8 191-24-2		5.605	тту/ку		4.051	тту/ку	0.000405 %	\checkmark	
26		benzo[b]fluoranthene		12 56	ma/ka		10 423	ma/ka	0 00104 %	./	
		601-034-00-4 205-911-9 205-99-2		12.00			10.120			Ň	
27		benzo[k]fluoranthene		12.56	mg/kg		10.423	mg/kg	0.00104 %		
		601-036-00-5 205-916-6 207-08-9									
28	Θ	pH		8.16	pН		8.16	pН	8.16 pH		
	-	PH	-							\square	
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5	mg/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< th=""></lod<>
\vdash		00-007-00-3	1					Total	0.0765 %		

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Report created by Iain Williams on 16 Nov 2018

Classification of sample: WS11[0.5m]

Sample details

Sample Name:	LoW Code:	
WS11[0.5m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
8.2%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 8.2% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1		benzene	boo 750 7	74 40 0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
		601-020-00-8	200-753-7	/1-43-2									
2	toluene			<0.01 ma/ka		<0.01	ma/ka	<0.000001 %		<lod< th=""></lod<>			
-		601-021-00-3	203-625-9	108-88-3					10101				
3		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
4	0	ethylbenzene				<0.01 mg	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4			5.5			5.5			-
5	0	TPH (C6 to C40) p	etroleum group			396	mg/kg	1	365.989	mg/kg	0.0366 %	\checkmark	
				ТРН									
6		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane	4004.04.4	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
<u> </u>		603-181-00-X 216-653-1 1634-04-4								T ()	0.0000.0/		
										Iotal:	0.0366 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) <LOD Below limit of detection

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration low.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0366%)

Classification of sample: WS11[2m]

Sample details

Sample Name:	LoW Code:	
WS11[2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
23.8%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 23.8% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number	CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	327-53-3	ပ ပ	7 mg/k	1 .32	7.465 mg/kg	0.000747 %	∠	
2	4	cadmium { cadmium sulfide } 048-010-00-4	306-23-6	1	<1 mg/k	g 1.285	<1.285 mg/kg	<0.0001 %		<lod< th=""></lod<>
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 13	317-38-0		14 mg/k	1.252	14.156 mg/kg	0.00142 %	~	
4	4	chromium in chromium(III) compounds { oxide } 215-160-9 13	chromium(III) 308-38-9		11 mg/k	9 1.462	12.986 mg/kg	0.0013 %	\checkmark	
5	4	chromium in chromium(VI) compounds { oxide } 024-001-00-0 215-607-8 13	chromium(VI)		<0.1 mg/k	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { lead compounds with the exception specified elsewhere in this Annex (worst	tion of those case) }	1	77 mg/k	9	62.197 mg/kg	0.00622 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 74	187-94-7		<1 mg/k	g 1.353	<1.353 mg/kg	<0.000135 %		<lod< th=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12 234-348-1 [2] 11	2054-48-7 [1] 1113-74-9 [2]		9 mg/k	1.579	11.483 mg/kg	0.00115 %	~	
9	4	selenium { selenium compounds with the cadmium sulphoselenide and those spec in this Annex 034-002-00-8	exception of ified elsewhere		<1 mg/k	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222-5 13	314-13-2		<1 mg/k	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 13	803-86-2		45 mg/k	3.22	117.039 mg/kg	0.0117 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91	1-20-3		0.351 mg/k	9	0.284 mg/kg	0.0000284 %	\checkmark	
13	8	acenaphthylene 205-917-1 20	08-96-8		0.206 mg/k	9	0.166 mg/kg	0.0000166 %	\checkmark	

#			Determinand		P Note	User entered	er entered data		Compound conc.		Classification value	IC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	5							ž	
14	8	acenaphthene	201-469-6	83-32-9		0.337	mg/kg		0.272	mg/kg	0.0000272 %	\checkmark	
45		fluorene	201 403 0	00 02 0	+	0.704			0.500		0.0000500.00		
15			201-695-5	86-73-7		0.721	mg/kg		0.582	mg/kg	0.0000582 %	\checkmark	
16	8	phenanthrene				2.456	ma/ka		1.984	ma/ka	0.000198 %	1	
			201-581-5	85-01-8								Ľ	
17	۲	anthracene	204-371-1	120-12-7		0.65	mg/kg		0.525	mg/kg	0.0000525 %	\checkmark	
10		fluoranthene				2 624	malka		2 1 2 9	malka	0.000212.9/	,	
10			205-912-4	206-44-0		2.034	шу/ку		2.120	iiig/kg	0.000213 /8	~	
19	8	pyrene				2.395	mg/kg		1.935	mg/kg	0.000193 %	\checkmark	
_		h an za[a] an thra a an	204-927-3	129-00-0	_								
20		601-033-00-9	e 200-280-6	56-55-3		2.016	mg/kg		1.628	mg/kg	0.000163 %	\checkmark	
24		chrysene	200 200 0		\top	4.50			1 000		0.000100.0/		
21		601-048-00-0	205-923-4	218-01-9		1.52	тід/кд		1.220	тід/кд	0.000123 %	\checkmark	
22		benzo[a]pyrene; be	enzo[def]chrysene			0.828	mg/kg		0.669	ma/ka	0.0000669 %	1	
		601-032-00-3	200-028-5	50-32-8								Ľ	
23	0	indeno[123-cd]pyre	205-893-2	103-30-5		0.539	mg/kg		0.435	mg/kg	0.0000435 %	\checkmark	
-		dibenz[a.h]anthrac	ene	193-39-3									
24		601-041-00-2	200-181-8	53-70-3		0.363	mg/kg		0.293	mg/kg	0.0000293 %	\checkmark	
25	0	benzo[ghi]perylene)			0.535	ma/ka		0 432	ma/ka	0 0000432 %	1	
			205-883-8	191-24-2								ľ	
26	8	coronene	005 004 7	404 07 4		0.205	mg/kg		0.166	mg/kg	0.0000166 %	\checkmark	
-		benzo[b]fluoranthe	205-881-7	191-07-1	-							-	
27		601-034-00-4	205-911-9	205-99-2		1.538	mg/kg		1.242	mg/kg	0.000124 %	\checkmark	
28		benzo[k]fluoranther	ne			1 538	ma/ka		1 2/2	ma/ka	0 000124 %	,	
20		601-036-00-5	205-916-6	207-08-9		1.000	iiig/kg		1.242	iiig/kg	0.000124 //	~	
29		benzene				0.02	mg/kg		0.0162	mg/kg	0.00000162 %	\checkmark	
		601-020-00-8	200-753-7	/1-43-2	+							-	
30		601-021-00-3	203-625-9	108-88-3	-	0.1	mg/kg		0.0808	mg/kg	0.00000808 %	\checkmark	
		xylene										+	
31		601-022-00-9	202-422-2 [1]	95-47-6 [1]		0.04	ma/ka		0 0323	ma/ka	0 00000323 %		
			203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		0.01	iiig/itg		0.0023 mg/kg 0.00000323 /		0.0000020 /	\checkmark	
			215-535-7 [4]	1330-20-7 [4]									
32	۲	ethylbenzene	000.040.4	400.44.4		0.17	mg/kg		0.137	mg/kg	0.0000137 %	\checkmark	
-	-	polychlorobiobeov/	202-849-4	100-41-4	+							┝	
33	۲	602-039-00-4	215-648-1	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
34		рН			1	8.67	рH		8.67	рН	8 67 nH	1	
				PH		0.07	рп		0.07		0.07 pm		
	4	cyanides { • salts exception of compl	of hydrogen cyanic ex cyanides such a	le with the as ferrocyanides,									
35		ferricyanides and mercuric oxycyanide and those				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		specified elsewhere	e in this Annex }	1									
		TPH (C6 to C40) p	etroleum group			00.4			540.440		0.0540.00		
36	-			TPH		634	mg/kg		512.116	mg/kg	0.0512 %	\checkmark	
_		tert-butyl methyl et	her; MTBE;										
37		2-methoxy-2-methy	/ipropane	1634 04 4		0.14	mg/kg		0.113	mg/kg	/kg 0.0000113 %	\checkmark	
		phenol	L 10-000-1	1034-04-4	+							\vdash	
38		604-001-00-2	203-632-7	108-95-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
					•					Total:	0.0761 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۵	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration low.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 1.62e-06%) toluene: (conc.: 8.08e-06%) ethylbenzene: (conc.: 0.00001%) tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane: (conc.: 0.00001%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

xylene: (conc.: 3.23e-06%) TPH (C6 to C40) petroleum group: (conc.: 0.0512%)

Classification of sample: WS11[3m]

In the list of waste	Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
----------------------	---	--

Sample details

Sample Name: WS11[3m]	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated s							
Sample Depth:	·	from contaminated sites)							
3.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05							
Moisture content:		03)							
10.7% (dry weight correction)									

Hazard properties

None identified

Determinands

Moisture content: 10.7% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ata	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	ioxide }	4007 50 0		3 m	ng/kg	1.32	3.578	mg/kg	0.000358 %	\checkmark	
2	4	cadmium { cadmiu	m sulfide }	1327-53-3	1	2 m	ng/kg	1.285	2.322	mg/kg	0.000181 %	~	
		048-010-00-4	215-147-8	1306-23-6	-								
3	44	copper { copper(II)	OXIDE }	1217 20 0		26 m	ng/kg	1.252	29.4	mg/kg	0.00294 %	\checkmark	
4	4	chromium in chrom oxide }	nium(III) compounds	s { • chromium(III)		32 m	ng/kg	1.462	42.249	mg/kg	0.00422 %	~	
_	•	obromium in obrom	215-160-9	1308-38-9	-								
5	44	oxide }				<0.1 m	ng/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
	•	024-001-00-0	215-607-8	1333-82-0									
6	44	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }		1	25 m	ng/kg		22.584	mg/kg	0.00226 %	\checkmark		
		082-001-00-6											
7	×\$	mercury { mercury dichloride }				<1 m	ng/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7									
8	4	nickel { nickel dihyc 028-008-00-X	droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		51 m	ig/kg	1.579	72.768	mg/kg	0.00728 %	\checkmark	
9	4	selenium { selenium cadmium sulphose in this Annex }	m compounds with t lenide and those sp	he exception of ecified elsewhere		<1 m	ig/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
<u> </u>		134-002-00-8			-								
10	~	030-013-00-7	215-222-5	1314-13-2		<1 m	ig/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
	æ	boron { diboron tric	xide: boric oxide }										
11	~	005-008-00-8	215-125-8	1303-86-2		105 m	ig/kg	3.22	305.408	mg/kg	0.0305 %	\checkmark	
12		benzene	·			<0.01 m	a/ka		<0.01	ma/ka	<0.000001 %		
		601-020-00-8	200-753-7	71-43-2	1	<0.01 III	ig/rg		<0.01	mg/kg	<0.00001 //		<l00< td=""></l00<>
13		toluene				<0.01 m	ng/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3						0 0			

Page 58 of 96

#		CLP index number	Determinand EC Number	CAS Number	LP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		xylene	boo 400 0 [4]	05.47.0.[4]								Σ	
14		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		0.02 mg/kg		0.0181	mg/kg	0.00000181 %	~		
15	8	ethylbenzene 601-023-00-4	202-849-4	100-41-4		0.05	mg/kg		0.0452	mg/kg	0.00000452 %	\checkmark	
16	8	рН		PH		8.7	рН		8.7	pН	8.7 pH		
17	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>	
18	0	TPH (C6 to C40) p	etroleum group	ТРН		31	mg/kg		28.004	mg/kg	0.0028 %	~	
19		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	her; MTBE; ylpropane 216-653-1	1634-04-4	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		·	* 	*				•	·	Total:	0.0513 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration very low.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

ethylbenzene: (conc.: 4.52e-06%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

xylene: (conc.: 1.81e-06%)

TPH (C6 to C40) petroleum group: (conc.: 0.0028%)

Classification of sample: WS12[0.5m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS12[0.5m] Sample Depth:	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
21.7% (dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 21.7% Dry Weight Moisture Correction applied (MC)

#		CLP index number E	eterminand C Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide	; }	1327-53-3		27	mg/kg	1.32	29.292	mg/kg	0.00293 %	\checkmark	
2	4	cadmium { cadmium sulf 048-010-00-4 215-1	fide }	1306-23-6	1	1	mg/kg	1.285	1.056	mg/kg	0.0000822 %	\checkmark	
3	4	copper { copper(II) oxide 029-016-00-6 215-2	• } 269-1 (*	1317-38-0		306	mg/kg	1.252	314.744	mg/kg	0.0315 %	\checkmark	
4	4	chromium in chromium(II oxide }	II) compounds	{ • chromium(III)		22	mg/kg	1.462	26.421	mg/kg	0.00264 %	~	
5	4	chromium in chromium(\ oxide } 024-001-00-0 215-6	VI) compounds	{ chromium(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compound specified elsewhere in th	ls with the exce his Annex (wors	ption of those tt case) }	1	481	mg/kg		395.234	mg/kg	0.0395 %	~	
7	4	mercury { mercury dichlo 080-010-00-X 231-2	oride }	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide 028-008-00-X 235-0 234-3	<mark>e</mark> } 008-5 [1] 348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		60	mg/kg	1.579	77.872	mg/kg	0.00779 %	~	
9	4	selenium { <mark>selenium com cadmium sulphoselenide</mark> in this Annex }	npounds with th and those spe	e exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	222-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; 005-008-00-8 215-1	boric oxide }	1303-86-2		233	mg/kg	3.22	616.46	mg/kg	0.0616 %	\checkmark	
12		naphthalene 601-052-00-2 202-0)49-5	91-20-3		0.056	mg/kg		0.046	mg/kg	0.0000046 %	\checkmark	
13	۲	acenaphthylene 205-9	917-1	208-96-8		0.08	mg/kg		0.0657	mg/kg	0.00000657 %	\checkmark	

#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	8	acenaphthene	1	Ĭ	0.068	ma/ka		0 0559	ma/ka	0 00000559 %		
		201-469-6 83-32-9			chooc mgrig		0.0000			Ň		
15		fluorene			0.062	ma/ka		0.0509	ma/ka	0.00000509 %	1	
		201-695-5	86-73-7			5.5					•	
16	0	phenanthrene			0.02	ma/ka		0.0164	ma/ka	0.00000164 %		
		201-581-5 85-01-8				5.5			5.5		•	
17		anthracene 204-371-1 120-12-7			0.149	ma/ka		0.122	ma/ka	0.0000122 %	1	
											ľ	
18		fluoranthene			0.505	ma/ka		0 415	ma/ka	0 0000415 %	1	
		205-912-4	206-44-0					3.3		ľ		
19	0	pyrene			0.36	ma/ka		0.296	0.296 ma/ka 0.0000296 %	1		
		204-927-3	129-00-0						5.5		ľ	
20		benzo[a]anthracene			0.457	ma/ka		0.376	ma/ka	0.0000376 %	1	
		601-033-00-9 200-280-6	56-55-3			5.5					ľ	
21		chrysene			0.604	ma/ka		0.496 mg/kg 0.0000496 %	0.0000496 %	1		
		601-048-00-0 205-923-4	218-01-9			5.5					ľ	
22		benzo[a]pyrene; benzo[def]chrysene			0.544	ma/ka		0.447 mg/kg 0.0000447	0.0000447 %	1		
		601-032-00-3 200-028-5	50-32-8								ľ	
23	0	indeno[123-cd]pyrene			0.387	ma/ka		0.318	ma/ka	0 0000318 %	1	
		205-893-2								*		
24		dibenz[a,h]anthracene			0.317	ma/ka		0.26 ma/kc	ma/ka	0.000026 %	1	
		601-041-00-2 200-181-8	53-70-3					0.20		0.000020 //	ľ	
25	0	benzo[ghi]perylene			0.537	ma/ka		0 441	ma/ka	0 0000441 %	1	
		205-883-8 191-24-2			0.537	iiig/itg			iiig/iig		Ň	
26		benzo[b]fluoranthene			1 007	ma/ka		0.827	ma/ka	0 0000827 %	1	
		601-034-00-4 205-911-9 205-99-2							0.027 mg/kg 0.0000027 /8	ľ		
27		benzo[k]fluoranthene	benzo[k]fluoranthene			ma/ka		0 827	ma/ka	0 0000827 %	./	
		601-036-00-5 205-916-6 207-08-9									Ň	
28		рН			8.21	ρΗ		8.21	ρΗ	8.21 pH		
			PH			p			p			
29	4	cyanides { salts of hydrogen cyanic exception of complex cyanides such a ferricyanides and mercuric oxycyanide specified elsewhere in this Annex } 006-007-00-5	le with the as ferrocyanides, e and those		<2.5	mg/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< th=""></lod<>
								Total:	0.147 %	1		

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS12[1m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	

Sample details

Sample Name:	LoW Code:	
WS12[1m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
14%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 14% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		27 mg/kg	1.32	31.271 mg/kg	0.00313 %	\checkmark	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	1 mg/kg	1.285	1.127 mg/kg	0.0000877 %	\checkmark	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		610 mg/kg	1.252	669.81 mg/kg	0.067 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide } 215-160-9 1308-38-9		19 mg/kg	1.462	24.359 mg/kg	0.00244 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	937 mg/kg		821.93 mg/kg	0.0822 %	\checkmark	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		38 mg/kg	1.579	52.65 mg/kg	0.00526 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		228 mg/kg	3.22	643.976 mg/kg	0.0644 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.047 mg/kg		0.0412 mg/kg	0.00000412 %	\checkmark	
13	8	acenaphthylene 205-917-1 208-96-8		0.026 mg/kg		0.0228 mg/kg	0.00000228 %	\checkmark	

#		CLP index number	Determinand	CAS Number	P Note	User entered data		Conv. Factor Compound conc.		Classification		Conc. Not Used	
					<u>ರ</u>							ž	
14	Θ	acenaphinene	201-469-6	83-32-9	-	0.083	mg/kg		0.0728	mg/kg	0.00000728 %	\checkmark	
4.5		fluorene		00 02 0	\vdash	0.044			0.000		0.000000.0/		
15	_		201-695-5	86-73-7	-	0.041	mg/kg		0.036	mg/kg	0.0000036 %	\checkmark	
16	0	phenanthrene				0.503	ma/ka		0.441	ma/ka	0.0000441 %	1	
			201-581-5	85-01-8								Ľ	
17	8	anthracene	b04 271 1	120 12 7		0.141	mg/kg		0.124	mg/kg	0.0000124 %	\checkmark	
		fluoranthene	204-371-1	120-12-7									
18	-		205-912-4	206-44-0		0.566	mg/kg		0.496	mg/kg	0.0000496 %	\checkmark	
19	0	pyrene				0.52	ma/ka		0 456	ma/ka	0 0000456 %	./	
			204-927-3	129-00-0		0.02			0.100			Ŷ	
20		benzo[a]anthracen	e			0.537	mg/kg		0.471	mg/kg	0.0000471 %	\checkmark	
		601-033-00-9	200-280-6	56-55-3	-								
21		chrysene	b05 022 4	219 01 0	-	0.555	mg/kg		0.487	mg/kg	0.0000487 %	\checkmark	
		benzo[a]pyrene: be	203-923-4	210-01-9	+								
22		601-032-00-3 200-028-5 50-32-8			-	0.385	mg/kg		0.338 mg/kg	0.0000338 %	\checkmark		
22		indeno[123-cd]pyre	ene			0.170			0.457		0.0000157.0/	,	
23			205-893-2	193-39-5	_	0.179	mg/kg		0.157	mg/kg	0.0000157 %	\checkmark	
24		dibenz[a,h]anthrac	ene			0.116	ma/ka		0.102	ma/ka	0.0000102 %	J	
		601-041-00-2	200-181-8	53-70-3								Ň	
25	۲	benzolghijperylene			_	0.218 mg/k	mg/kg		0.191	mg/kg	0.0000191 %	\checkmark	
		benzo[b]fluoranthene											
26		601-034-00-4	205-911-9	205-99-2	-	0.537	mg/kg		0.471	mg/kg	0.0000471 %	\checkmark	
07		benzo[k]fluoranthei	ne	200 00 2		0.507			0.474		0.0000.474.0/		
27		601-036-00-5 205-916-6 207-08-9			-	0.537 mg	mg/кg		0.471	mg/ĸg	0.0000471 %	\checkmark	
28		benzene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2											
29		toluene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	-								
		601-022-00-9	202-422-2 [1]	95-47-6 [1]	-				<0.01	mg/kg			
30		001 022 00 3	203-396-5 [2]	106-42-3 [2]		<0.01	mg/kg				<0.000001 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3] 1330-20-7 [4]									
	0	ethylbenzene		1000 20 7 [4]									
31		601-023-00-4	202-849-4	100-41-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32	8	рН				8.01	nН		8.01	лH	8 01 pH		
52				PH		0.01	pri		0.01		0.01 pm		
33	*	cyanides { salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyanid ex cyanides such a nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<2.5	mg/kg	1.884	<4.71	mg/kg	<0.000471 %		<lod< td=""></lod<>
	6	TPH (C6 to C40) petroleum aroup			┢								
34					4.02	mg/kg		3.526	mg/kg	0.000353 %	\checkmark		
35		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE; /lpropane			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							Total	0 226 %	\vdash		

Key User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 8 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4 concentration <LOD Below limit of detection CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration very low.

Hazard Statements hit:

Flam. Lig. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00035%)

Classification of sample: BH1[2m]

Sample details

Sample Name:	LoW Code:	
BH1[2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
33.3%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 33.3% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number	CAS Number	LP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		C	11	mg/kg	1.32	10.895	mg/kg	0.00109 %	∠	
<u> </u>		033-003-00-0 215-481-4	1327-53-3	\vdash								
2	4	cadmium { cadmium sulfide }	4000.00.0	1	<0.5	mg/kg	1.285	<0.643	mg/kg	<0.00005 %		<lod< td=""></lod<>
		coppor (coppor(II) oxida)	1306-23-0									
3	~	029-016-00-6 215-269-1	1317-38-0		28	mg/kg	1.252	26.294	mg/kg	0.00263 %	\checkmark	
4	4	chromium in chromium(III) compounds oxide }	{		10	mg/kg	1.462	10.964	mg/kg	0.0011 %	~	
5	4	chromium in chromium(VI) compounds oxide }	s { chromium(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { lead compounds with the exc specified elsewhere in this Annex (wor 082-001-00-6	eption of those st case) }	1	362	mg/kg		271.568	mg/kg	0.0272 %	~	
_	æ	mercury { mercury dichloride }										
1	~	080-010-00-X 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
	æ	nickel { nickel dihydroxide }										
8		028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		14	mg/kg	1.579	16.589	mg/kg	0.00166 %	\checkmark	
9	4	selenium { selenium compounds with t cadmium sulphoselenide and those sp in this Annex 034-002-00-8	he exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
	æ	zinc { zinc oxide }										
10	~	030-013-00-7 215-222-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	æ	boron { diboron trioxide; boric oxide }			63	malka	2 22	140 762	malka	0.015.9/	,	
		005-008-00-8 215-125-8	1303-86-2		02	шу/ку	3.22	149.702	тту/ку	0.015 %	V	
12		naphthalene			0.075	ma/ka		0.0563	ma/ka	0 00000563 %	./	
Ľ.		601-052-00-2 202-049-5	91-20-3								ř	
13	۵	acenaphthylene	208-96-8		0.019	mg/kg		0.0143	mg/kg	0.00000143 %	\checkmark	
		203-317-1	200-30-0									

#		Determinand CLP index number EC Number CAS Numbe	CLP Note	User entere	d data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
14	0	acenaphthene		0.066	ma/ka		0.0495	ma/ka	0.00000495 %	_	
Ľ		201-469-6 83-32-9		0.000						Ň	
15	۲	fluorene		0.105	mg/kg		0.0788	mg/kg	0.00000788 %	\checkmark	
		201-695-5 86-73-7									
16	۲	phenanthrene		0.559	mg/kg		0.419	mg/kg	0.0000419 %	\checkmark	
		201-581-5 85-01-8									
17	۲	anthracene		0.179	mg/kg		0.134	mg/kg	0.0000134 %	\checkmark	
		204-371-1 120-12-7									
18	۲	fluoranthene		0.393	mg/kg		0.295	mg/kg	0.0000295 %	\checkmark	
		205-912-4 206-44-0									
19	۲	pyrene		0.298	mg/kg		0.224	mg/kg	0.0000224 %	\checkmark	
		204-927-3 129-00-0									
20		benzo[a]anthracene		0.179	mg/kg		0.134	mg/kg	0.0000134 %		
		601-033-00-9 200-280-6 56-55-3									
21		chrysene		0.147	ma/ka		0.11	ma/ka	0.000011 %	1	
		601-048-00-0 205-923-4 218-01-9		_				5.5		*	
22		benzo[a]pyrene; benzo[def]chrysene		0 135	ma/ka		0 101	ma/ka	0.0000101 %	./	
		601-032-00-3 200-028-5 50-32-8								Ň	
23	۰	indeno[123-cd]pyrene		0.061	ma/ka		0.0458	ma/ka	0.00000458 %	\checkmark	
		205-893-2 193-39-5		0.001	тту/ку						
24		dibenz[a,h]anthracene		0.051	ma/ka		0.0383	ma/ka	0 0000383 %		
24		601-041-00-2 200-181-8 53-70-3		0.001	iiig/kg		0.0000	iiig/itg	0.00000000 /0	~	
25		benzo[ghi]perylene		0.095	ma/ka		0.0713	ma/ka	0 0000713 %		
25		205-883-8 191-24-2		0.095	iiig/kg		0.0713	шу/ку	0.00000713 /8	~	
26		benzo[b]fluoranthene		0 181	ma/ka		0 136	ma/ka	0.0000136 %		
20		601-034-00-4 205-911-9 205-99-2		0.101	iiig/kg		0.150	шу/ку	0.0000130 /8	~	
27		benzo[k]fluoranthene		0 181	ma/ka		0 136	ma/ka	0.0000136 %		
21		601-036-00-5 205-916-6 207-08-9		0.101	iiig/kg		0.150	шу/ку	0.0000130 /8	~	
28		рН		8.63	nН		8.63	nН	8 63 nH		
20		PH		0.00	рп		0.05	рп	0.00 pm		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		, <u>I</u> I						Total:	0.0494 %	Γ	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: BH3[2m]

Sample details

Sample Name:	LoW Code:	
BH3[2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.0 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
23.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 23.5% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	AC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		8 mg/kg	1.32	8.553 mg/kg	0.000855 %	~	
2	*	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.5 mg/kg	1.285	<0.643 mg/kg	<0.00005 %		<lod< th=""></lod<>
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		7 mg/kg	1.252	7.095 mg/kg	0.00071 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide }		16 mg/kg	1.462	18.935 mg/kg	0.00189 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	30 mg/kg		24.291 mg/kg	0.00243 %	~	
7	4	mercury { mercury dichloride }		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		16 mg/kg	1.579	20.463 mg/kg	0.00205 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	_	<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		59 mg/kg	3.22	153.824 mg/kg	0.0154 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
13	0	acenaphthylene 205-917-1 208-96-8		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>

#		Determinand	CAS Number	P Note	User entere	d data	Conv. Factor	Compound co	onc.	Classification value	C Applied	Conc. Not Used
				ŭ							ž	
14	8	201-469-6	83-32-9	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		fluorene	p0 02 0	+							H	
15		201-695-5	86-73-7	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
10		phenanthrene			.1					-0.0001.0/		
10		201-581-5	85-01-8		<1	тід/кд		<1	тід/кд	<0.0001 %		<lod< th=""></lod<>
17	8	anthracene			<1	ma/ka		<1	ma/ka	<0.0001 %		<1.0D
		204-371-1	120-12-7	1		ing/ng			iiig/itg			.200
18	Θ	fluoranthene			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		205-912-4	206-44-0	_								
19	8	204-927-3	129-00-0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
20		benzo[a]anthracene			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		601-033-00-9 <u>200-280-6</u>	56-55-3									
21		chrysene	b10.01.0	_	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	_	601-048-00-0 205-923-4	k18-01-9	+							H	
22		601-032-00-3 200-028-5	50-32-8	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		indeno[123-cd]pyrene	00 02 0	+							H	
23		205-893-2	193-39-5	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
0.4		dibenz[a,h]anthracene								0.0001.0/		1.00
24		601-041-00-2 200-181-8	53-70-3		<1	mg/kg		<1	mg/кg	<0.0001 %		<lod< td=""></lod<>
25		benzo[ghi]perylene			_1	ma/ka			ma/ka	<0.0001 %		
20		205-883-8	191-24-2			iiig/itg			iiig/itg	<0.0001 /0		LOD
26		benzo[b]fluoranthene			<1	ma/ka		<1	ma/ka	<0.0001 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9	205-99-2]					5.5			
27		benzo[k]fluoranthene	607.00.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
-		601-036-00-5 205-916-6	207-08-9								\square	
28		601 020 00 8 200 753 7	71 /2 2	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-	_	toluene	11-45-2	+							H	
29		601-021-00-3 203-625-9	108-88-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		xylene									П	
30		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31	8	ethylbenzene		Γ	<0.01	ma/ka		<0.01	ma/ka	<0.000001 %	\square	<1.0D
		601-023-00-4 202-849-4	100-41-4		<0.01	iiig/itg		<0.01	iiig/itg	<0.000001 /0		LOD
32	Θ	рН			8.93	pН		8.93	pН	8.93 pH		
			PH			· ·				·		
33	4	cyanides { salts of hydrogen cyan exception of complex cyanides such ferricyanides and mercuric oxycyani specified elsewhere in this Annex }	ide with the as ferrocyanides, de and those		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
	-	TPH (C6 to C40) petroleum group		+							\vdash	
34	۲		ТРН	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		T	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
-		p03-181-00-X 216-653-1	1634-04-4						Total	0.0255 %	\vdash	

Kov

rey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

Classification of sample: BH3[0.5m]

Sample details

Sample Name:	LoW Code:	
BH3[0.5m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
24.3%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 24.3% Dry Weight Moisture Correction applied (MC)

#		Determinand	CAS Number	-P Note	User entered d	ata	Conv. Factor	Compound o	onc.	Classification value	C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		CI	30 m	na/ka	1.32	31 866	ma/ka	0 00319 %	Ň ./	
Ŀ		033-003-00-0 215-481-4	1327-53-3			ig/itg	1.02	01.000	iiig/iig	0.00010 /0	×	
2	4	cadmium { <mark>cadmium sulfide</mark> }		1	<0.5 m	na/ka	1 285	<0.643	ma/ka	<0.00005 %		<lod< th=""></lod<>
_		048-010-00-4 215-147-8	1306-23-6	Ľ		.g/g						
3	4	copper {			91 m	na/ka	1 252	91 643	ma/ka	0 00916 %	./	
Ľ		029-016-00-6 215-269-1	1317-38-0			.g/g					Ŷ	
4	4	chromium in chromium(III) compounds oxide }	{ [•] chromium(III)		16 m	ng/kg	1.462	18.813	mg/kg	0.00188 %	~	
		215-160-9	1308-38-9									
5	4	chromium in chromium(VI) compounds oxide }	{		<0.1 m	ng/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>
		024-001-00-0 215-607-8	1333-82-0									
6	4	lead { <pre>lead compounds with the exce specified elsewhere in this Annex (wor</pre>	eption of those st case) }	1	466 m	ng/kg		374.899	mg/kg	0.0375 %	~	
		082-001-00-6										
7	4	<pre>mercury { mercury dichloride }</pre>			<0.3 m	ng/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8	7487-94-7									
	4	nickel { nickel dihydroxide }		10	40		4 570	70 50 450	~~~// <i>c</i> ~	0.00505.0/		
8		028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		46 m	пд/кд	1.579	58.453	тg/кg	0.00585 %	\checkmark	
9	4	selenium { selenium compounds with t cadmium sulphoselenide and those sp in this Annex }	he exception of ecified elsewhere		<0.5 m	ng/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
		034-002-00-8										
10	4	zinc { zinc oxide }	4044400		<1 m	ng/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
		030-013-00-7 <u>215-222-5</u>	1314-13-2							1		
11	44	005-008-00-8 215-125-8	1303-86-2		98 m	ng/kg	3.22	253.86	mg/kg	0.0254 %	\checkmark	
10		naphthalene			0.077			0.0010		0.0000010.0/		
12		601-052-00-2 202-049-5	91-20-3		0.077 m	пд/кд		0.0619	rng/кg	0.0000619 %	\checkmark	
13		acenaphthylene			0.065 m	ng/kg		0.0523	mg/ka	0.00000523 %	\checkmark	
		205-917-1	208-96-8			5 5			0.0		Ľ	

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
		acenaphthene	U					Σ	
14		201-469-6 83-32-9		0.038 mg/kg		0.0306 mg/kg	0.00000306 %	\checkmark	
45		fluorene		0.045		0.0000	0.0000000.0/	,	
15		201-695-5 86-73-7		0.045 mg/kg		0.0362 mg/kg	0.00000362 %	\checkmark	
16		phenanthrene		0.619 mg/kg		0.407 ma/ka	0 0000 407 %		
10		201-581-5 85-01-8	1	0.010 1119/kg		0.497 Hig/kg	0.0000497 %		
17	۰	anthracene		0.251 mg/kg		0.202 ma/ka	0 0000202 %		
<u> </u>		204-371-1 120-12-7	1	0.201 119/Kg		0.202 119/kg	0.0000202 /8		
18		fluoranthene		0.76 ma/ka		0.611 ma/ka	0.0000611 %	1	
		205-912-4 206-44-0	1					ľ	
19	۲	pyrene		0.764 ma/ka		0.615 ma/ka	0.0000615 %	1	
		204-927-3 129-00-0						ľ	
20		benzo[a]anthracene		0.247 mg/kg		0.199 mg/kg	0.0000199 %	\checkmark	
		601-033-00-9 200-280-6 56-55-3						-	
21		chrysene		0.624 mg/kg		0.502 mg/kg	0.0000502 %	\checkmark	
		601-048-00-0 205-923-4 218-01-9	_						
22		benzo[a]pyrene; benzo[def]chrysene		0.46 mg/kg		0.37 mg/kg	0.000037 %	\checkmark	
		601-032-00-3 <u>200-028-5</u> 50-32-8	-						
23	۲	indeno[123-cd]pyrene		0.381 mg/kg		0.307 mg/kg	0.0000307 %	\checkmark	
		205-893-2 193-39-5	-						
24		dibenz[a,h]anthracene		0.398 mg/kg		0.32 mg/kg	0.000032 %	\checkmark	
<u> </u>		601-041-00-2 200-181-8 63-70-3	-						
25	۲	benzo[ghi]perylene		0.701 mg/kg		0.564 mg/kg	0.0000564 %	\checkmark	
<u> </u>	-	205-883-8 191-24-2							
26			4	0.937 mg/kg		0.754 mg/kg	0.0000754 %	\checkmark	
		bonzo[k]fluoranthono							
27		601-036-00-5 b05-916-6 b07-08-9	-	0.937 mg/kg		0.754 mg/kg	0.0000754 %	\checkmark	
	_	nH							
28		РН	-	8.98 pH		8.98 pH	8.98 pH		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
						Total:	0.0841 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: BH3[1m]

Sample details

Sample Name:	LoW Code:	
BH3[1m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
24.4%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 24.4% Dry Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP					MC /	0000
1		naphthalene				0.007 ma/ka		0.0056 ma/ka	0.000000563 %	1	
Ľ		601-052-00-2 202	2-049-5	91-20-3						v	
2		acenaphthylene				0.003 ma/ka		0.0024 ma/ka	0.00000241 %	./	
		205	5-917-1 2	208-96-8						v	
3		acenaphthene				0.019 ma/ka		0.0153 ma/ka	0 00000153 %	./	
Ľ		201	1-469-6 8	33-32-9						Ŷ	
4	۰	fluorene				0.002 ma/ka		0.0016 ma/ka	0 000000161 %	./	
<u> </u>		201	1-695-5 8	36-73-7						v	
5		phenanthrene				0.052 ma/ka		0.0418 ma/ka	0.00000418 %	J	
_		201	1-581-5 8	35-01-8						*	
6		anthracene				0.012 ma/ka		0.0096 ma/ka	0.000000965 %	J	
		204	4-371-1	20-12-7				3.3		ľ	
7	۲	fluoranthene				0.032 ma/ka		0.0257 ma/ka	0.0000257 %	J	
		205	5-912-4 2	206-44-0						<u> </u>	
8	۲	pyrene				0.027 ma/ka		0.0217 ma/ka	0.00000217 %	J	
		204	4-927-3	29-00-0						ľ	
9		benzo[a]anthracene				0.032 ma/ka		0.0257 ma/ka	0.0000257 %	J	
		601-033-00-9 200	0-280-6 5	56-55-3						ľ	
10		chrysene				0.036 mg/kg	0.0289 ma/kg	0 00000289 %	./		
		601-048-00-0 205	5-923-4 2	218-01-9					0.00000203 //	Ŷ	
11		benzo[a]pyrene; benzo	o[def]chrysene			0.007 ma/ka		0.0056 ma/ka	0 000000563 %	./	
		601-032-00-3 200	0-028-5 5	50-32-8						Ŷ	
12	۲	indeno[123-cd]pyrene				0.014 ma/ka		0.0113 ma/ka	0.00000113 %	J	
		205	5-893-2 1	193-39-5						Ŷ	
13		dibenz[a,h]anthracene	9			0.006 ma/ka		0.0048 ma/ka	0.00000482 %	J	
		601-041-00-2 200	0-181-8	53-70-3						Ŷ	
14	۲	benzo[ghi]perylene				0.022 ma/ka		0.0177 ma/ka	0.00000177 %	J	
		205	5-883-8	191-24-2						Ŷ	
15	۲	coronene				0.008 ma/ka		0.0064 ma/ka	0.00000643 %	J	
		205	5-881-7	191-07-1						v	
16		benzo[b]fluoranthene				0.036 ma/ka		0.0289 ma/ka	0.0000289 %		
Ľ		601-034-00-4 205	5-911-9 2	205-99-2						ř	

www.hazwasteonline.com

62D3T-N4LXB-UGXXG

#		CLP index numbe	Determinand	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
17		benzo[k]fluoranthe	205-916-6	207-08-9		0.036	mg/kg		0.0289	mg/kg	0.00000289 %	\checkmark	
18		benzene 601-020-00-8	200-753-7	71-43-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
19		toluene 601-021-00-3	203-625-9	108-88-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
20		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
21	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
22	8	polychlorobipheny 602-039-00-4	ls; PCB 215-648-1	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
23	8	TPH (C6 to C40) p	petroleum group	ТРН		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
										Total:	0.00004 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

Classification of sample: BH4[1m]

Sample details

Sample Name:	LoW Code:	
BH4[1m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
9.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 9.5% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4	1327-53-3		26	mg/kg	1.32	31.35	mg/kg	0.00314 %	~	
2	~	cadmium { cadmium sulfide } 048-010-00-4 215-147-8	1306-23-6	1	1	mg/kg	1.285	1.174	mg/kg	0.0000913 %	~	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1	1317-38-0		237	mg/kg	1.252	270.932	mg/kg	0.0271 %	\checkmark	
4	~	chromium in chromium(III) compounds oxide } 215-160-9	\$ { • <mark>chromium(III)</mark> 1308-38-9		28	mg/kg	1.462	37.373	mg/kg	0.00374 %	~	
5	~	chromium in chromium(VI) compound oxide } 024-001-00-0 215-607-8	s { chromium(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	~	lead { lead compounds with the exc specified elsewhere in this Annex (wo	eption of those st case) }	1	392	mg/kg		357.991	mg/kg	0.0358 %	~	
	æ	mercury { mercury dichloride }		-								
7	~	080-010-00-X 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
	4	nickel { nickel dihydroxide }										
8		028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		40	mg/kg	1.579	57.699	mg/kg	0.00577 %	\checkmark	
9	4	selenium { selenium compounds with cadmium sulphoselenide and those sp in this Annex }	the exception of becified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>
		034-002-00-8								<u>.</u>		
10	*	030-013-00-7 215-222-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>
11	4	boron { diboron trioxide; boric oxide }			153	ma/ka	3 22	449 901	ma/ka	0.045 %	./	
		005-008-00-8 215-125-8	1303-86-2				0.22				×	
12		naphthalene	04.00.0		0.072	mg/kg		0.0658	mg/kg	0.00000658 %	\checkmark	
		acenanhthylene	91-20-3	-								
13	۲	205-917-1	208-96-8		0.101	mg/kg		0.0922	mg/kg	0.00000922 %	\checkmark	

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
		acenaphthene	U U					Σ	
14	-	201-469-6 83-32-9		0.054 mg/kg		0.0493 mg/kg	0.00000493 %	\checkmark	
45		fluorene		0.000		0.0001	0.0000001.0/	,	
15		201-695-5 86-73-7	1	0.068 mg/kg		0.0621 mg/kg	0.00000621 %	\checkmark	
16		phenanthrene		1.062 ma///a		0.07 ma/ka	0 00007 %		
10		201-581-5 85-01-8	1	1.002 Hig/Kg		0.97 Hig/kg	0.000097 %		
17		anthracene		0.26 mg/kg		0.237 ma/ka	0 0000237 %	/	
<u> </u>		204-371-1 120-12-7		0.20 119/89		0.237 119/Kg	0.0000237 /8		
18	۲	fluoranthene		1.407 mg/kg		1.285 mg/kg	0.000128 %	\checkmark	
		205-912-4 206-44-0	_						
19	۲	pyrene		1.379 mg/kg		1.259 mg/kg	0.000126 %	\checkmark	
		204-927-3 129-00-0							
20		benzolajanthracene		0.86 mg/kg		0.785 mg/kg	0.0000785 %	\checkmark	
		601-033-00-9 200-280-6 p6-55-3	-						
21		Chrysene		0.932 mg/kg		0.851 mg/kg	0.0000851 %	\checkmark	
\vdash		benzolalovrene: benzoldefichrysene							
22		601-032-00-3 200-028-5 50-32-8		1.039 mg/kg		0.949 mg/kg	0.0000949 %	\checkmark	
		indeno[123-cd]pyrene					0.0000040.00		
23	Ŭ	205-893-2 193-39-5	{	0.896 mg/kg		0.818 mg/kg	0.0000818 %	\checkmark	
		dibenz[a,h]anthracene							
24		601-041-00-2 200-181-8 53-70-3		0.678 mg/kg		0.619 mg/kg	0.0000619 %	\checkmark	
		benzo[ghi]perylene		4 4 4 7		4.00	0.0004.00.0/		
25		205-883-8 191-24-2	1	1.117 ттд/кд		1.02 mg/kg	0.000102 %		
26		benzo[b]fluoranthene		1 808 mg/kg		1.651 ma/ka	0.000165 %	/	
20		601-034-00-4 205-911-9 205-99-2		1.000 119/89		1.001 1119/Kg	0.000103 /8	×	
27		benzo[k]fluoranthene		1.808 mg/kc		1.651 ma/ka	0.000165 %	1	
		601-036-00-5 205-916-6 207-08-9						-	
28	Θ	pH		8.49 pH		8.49 pH	8.49 pH		
<u> </u>		PH	-					\square	
29	4	cyanides { Salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5 mg/kg	1.884	<4.71 mg/kg	<0.000471 %		<lod< th=""></lod<>
-	L	000-007-00-0				Total	0.123 %		

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: BH4[5-5.3m]

Sample details

Sample Name: BH4[5-5.3m]	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
5.0-5.3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		18 mg/kg	1.32	23.766 mg/kg	0.00238 %	\checkmark	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	1 mg/kg	1.285	1.285 mg/kg	0.0001 %	\checkmark	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0	-	270 mg/kg	1.252	337.98 mg/kg	0.0338 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide } 215-160-9 1308-38-9	_	14 mg/kg	1.462	20.462 mg/kg	0.00205 %	~	
5	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	430 mg/kg		430 mg/kg	0.043 %	~	
6	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	-	1.5 mg/kg	1.353	2.03 mg/kg	0.000203 %	\checkmark	
7	4	nickel { <mark>nickel dihydroxide }</mark> 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	29 mg/kg	1.579	45.805 mg/kg	0.00458 %	~	
8	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	_	<3 mg/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< th=""></lod<>
9	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2	-	<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
10	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		260 mg/kg	3.22	837.168 mg/kg	0.0837 %	\checkmark	
	_		_			Total:	0.171 %		

Report created by Iain Williams on 16 Nov 2018
--

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

Classification of sample: BH4[6-6.3m]

Sample details

Sample Name: BH4[6-6.3m]	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth: 6.0-6.3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	,	03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		22 mg/kg	1.32	29.047 mg/kg	0.0029 %	\checkmark	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	1 mg/kg	1.285	1.285 mg/kg	0.0001 %	\checkmark	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0	_	250 mg/kg	1.252	312.944 mg/kg	0.0313 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide } 215-160-9 1308-38-9		17 mg/kg	1.462	24.846 mg/kg	0.00248 %	~	
5	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	480 mg/kg		480 mg/kg	0.048 %	~	
6	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		2.1 mg/kg	1.353	2.842 mg/kg	0.000284 %	\checkmark	
7	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	40 mg/kg	1.579	63.18 mg/kg	0.00632 %	~	
8	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	_	<3 mg/kg	2.554	<7.661 mg/kg	<0.000766 %		<lod< th=""></lod<>
9	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
10	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		240 mg/kg	3.22	772.771 mg/kg	0.0773 %	\checkmark	
						Total:	0.17 %		

Report created by Iain Williams on 16 Nov 2018
--

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

Classification of sample: BH4[7.2m]

Sample details

Sample Name:	LoW Code:	
BH4[7.2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
7.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
40.9%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 40.9% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data Cor		User entered data		Conv. Factor	Compound c	onc.	Classification value	IC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		17	mg/kg	1.32	15.93	mg/kg	0.00159 %	∠			
2	4	cadmium { cadmium sulfide } 1327-53-5 048-010-00-4 215-147-8 1306-23-6	1	1	mg/kg	1.285	0.912	mg/kg	0.000071 %	\checkmark			
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0	_	42	mg/kg	1.252	37.313	mg/kg	0.00373 %	\checkmark			
4	4	chromium in chromium(III) compounds { chromium(III) oxide })	16	mg/kg	1.462	16.597	mg/kg	0.00166 %	~			
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>		
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	222	mg/kg		157.559	mg/kg	0.0158 %	~			
7	-4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	_	<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< th=""></lod<>		
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		26	mg/kg	1.579	29.146	mg/kg	0.00291 %	~			
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>		
10	4	zinc { zinc oxide }	_	<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>		
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2	_	95	mg/kg	3.22	217.096	mg/kg	0.0217 %	\checkmark			
12		naphthalene 601-052-00-2 202-049-5 91-20-3	_	0.039	mg/kg		0.0277	mg/kg	0.00000277 %	\checkmark			
13	0	acenaphthylene 205-917-1 208-96-8		0.009	mg/kg		0.0063	mg/kg	0.00000639 %	\checkmark			

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
-		acenaphthene	<u> </u>					Σ	
14		201-469-6 83-32-9	-	0.027 mg/kg	I	0.0192 mg/kg	0.00000192 %	\checkmark	
<u> </u>		fluorene	+						
15	-	201-695-5 86-73-7		0.025 mg/kg	1	0.0177 mg/kg	0.00000177 %	\checkmark	
40		phenanthrene		0.04		0.011	0.0000044.0/	,	
16		201-581-5 85-01-8		0.34 mg/kg		0.241 mg/kg	0.0000241 %	\checkmark	
17		anthracene		0.022 mg///c		0.0224 ma/ka	0.00000224.9/	,	
11		204-371-1 120-12-7		0.033 Hig/Kg		0.0234 Hig/kg	0.00000234 %	\checkmark	
18	٥	fluoranthene		0.113 mg/kg		0.0802 mg/kg	0 0000802 %	/	
10		205-912-4 206-44-0		0.115 119/82		0.0002 119/kg	0.0000002 /8	~	
19	۲	pyrene		0.092 mg/kg	1	0.0653 ma/ka	0 00000653 %	./	
		204-927-3 129-00-0		0.002 mg/ng				×	
20		benzo[a]anthracene		0.117 ma/ka	1	0.083 ma/ka	0.000083 %	1	
_		601-033-00-9 200-280-6 56-55-3						*	
21		chrysene		0.171 mg/kc	1	0.121 mg/kg	0.0000121 %	1	
		601-048-00-0 205-923-4 218-01-9						Ľ	
22		benzo[a]pyrene; benzo[def]chrysene		0.078 mg/kg	1	0.0554 mg/kg	0.00000554 %	\checkmark	
		601-032-00-3 200-028-5 50-32-8						Ľ	
23	۲	indeno[123-cd]pyrene		0.071 mg/kg	1	0.0504 mg/kg	0.00000504 %	\checkmark	
		205-893-2 193-39-5							
24		dibenz[a,h]anthracene		0.086 mg/kg	1	0.061 mg/kg	0.0000061 %	\checkmark	
		601-041-00-2 200-181-8 53-70-3	_						
25	۲	benzo[ghi]perylene		0.137 mg/kg	1	0.0972 mg/kg	0.00000972 %	\checkmark	
		205-883-8 191-24-2	_						
26		benzolojtiuorantnene		0.193 mg/kg	1	0.137 mg/kg	0.0000137 %	\checkmark	
_		601-034-00-4 205-911-9 205-99-2	_					\square	
27				0.193 mg/kg	1	0.137 mg/kg	0.0000137 %	\checkmark	
-		pH	-						
28	•	рн		7.84 pH		7.84 pH	7.84 pH		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } 006-007-00-5		<2.5 mg/kg	1.884	<4.71 mg/kg	<0.000471 %		<lod< th=""></lod<>
1						Total:	0.0483 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

Classification of sample: BH5[2m]

Sample details

Sample Name:	LoW Code:	
BH5[2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
23.2%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 23.2% Dry Weight Moisture Correction applied (MC)

#		Determinand		Note	User entered data Conv. Factor Compound conc. Classification value		ta Conv. Factor Compound		Classification value	Applied	Conc. Not Used		
		CLP index number EC Number	CAS Number	CLF							MC		
1	4	arsenic { <mark>arsenic trioxide</mark> }			15	ma/ka	1.32	16.075	ma/ka	0.00161 %	1		
		033-003-00-0 215-481-4	1327-53-3										
2	4	cadmium { cadmium sulfide }		1	<0.5	mg/kg	1.285	<0.643	mg/kg	<0.00005 %		<lod< th=""></lod<>	
		048-010-00-4 215-147-8	1306-23-6										
3	4	copper {			145	mg/kg	1.252	147.328	mg/kg	0.0147 %	\checkmark		
		029-016-00-6 215-269-1	1317-38-0										
4	4	chromium in chromium(III) compoun <mark>oxide</mark> }	ds {		30	mg/kg	1.462	35.59	mg/kg	0.00356 %	\checkmark		
		215-160-9	1308-38-9										
5	4	chromium in chromium(VI) compour oxide }	ds {		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< th=""></lod<>	
		024-001-00-0 215-607-8	1333-82-0										
6	4	lead { [•] lead compounds with the ex specified elsewhere in this Annex (w	cception of those orst case) }	1	602	mg/kg		488.636	mg/kg	0.0489 %	~		
		082-001-00-6											
7	4	mercury { mercury dichloride }			<0.3	ma/ka	1.353	<0.406	ma/ka	<0.0000406 %		<lod< td=""></lod<>	
		080-010-00-X 231-299-8	7487-94-7							5.5			
	4	nickel { nickel dihydroxide }					4 570	1 570 07 10	ma/ka				
8		028-008-00-X 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		29	mg/kg	1.579	37.18	mg/kg	0.00372 %	\checkmark		
9	4	selenium { selenium compounds with cadmium sulphoselenide and those in this Annex }	n the exception of specified elsewhere	_	<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< th=""></lod<>	
	-	034-002-00-8		-									
10	4	ZINC { ZINC OXIDE }	4014 40 0	_	<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< th=""></lod<>	
		030-013-00-7 215-222-5	1314-13-2	+							-		
11	~	005-008-00-8 215-125-8	1303-86-2	103	103	mg/kg	3.22	269.194	mg/kg	0.0269 %	\checkmark		
		naphthalene		\vdash				0.007.					
12		601-052-00-2 202-049-5	91-20-3		0.074	mg/kg		0.0601	mg/kg	0.00000601 %	\checkmark		
40		acenaphthylene		\square	0.044			0.0057		0.0000057.0/	,		
13		205-917-1	208-96-8		0.044	mg/ĸg		0.0357	ттд/кд	0.00000357 %	\checkmark		

CLD Index number EX Number CAS Number <th>#</th> <th></th> <th>Determinand</th> <th>o Note</th> <th>User entere</th> <th colspan="2">User entered data</th> <th colspan="2">User entered data Conv. Factor Compound conc.</th> <th>Classification value</th> <th>Applied</th> <th>Conc. Not Used</th>	#		Determinand	o Note	User entere	User entered data		User entered data Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used
14 accarage/networe 0.033 mg/kg 0.0244 mg/kg 0.0000244 % 15 accarage/networe 201-695-5 p6-73-7 0.021 mg/kg 0.00017 % % 16 a p01-695-5 p6-73-7 0.021 mg/kg 0.0388 mg/kg 0.00017.% % 17 a attraction g01-695-5 p6-73-7 0.19 mg/kg 0.388 mg/kg 0.000017.% % 18 a attraction g03-972.4 p06-912.4 p06-912.4 p06-912.7 g0.973 % 0.000077.% % % 10 a attraction g03-922.7.3 g20-00-0 0.941 mg/kg 0.0764 mg/kg 0.000076.% % % 20 bercolglaptrince attraction att			CLP index number EC Number CAS Number	CLF							MC	
Is Noncene Diverse Div	14	8	acenaphthene 201-469-6 83-32-9		0.03	mg/kg		0.0244	mg/kg	0.00000244 %	\checkmark	
Image: constraint of the second sec	15	8	fluorene		0.021	mg/kg		0.017	mg/kg	0.0000017 %	\checkmark	
16 Printmature.line Q11-581-5 B5-01-8 0.49 mg/kg 0.398 mg/kg 0.0000398 % ✓ 17 anthracene 201-581-5 B5-01-8 0.19 mg/kg 0.0154 mg/kg 0.0000154 % ✓ 18 anthracene 205-912-4 206-444-0 0.879 mg/kg 0.713 mg/kg 0.0000764 % ✓ 20 beroz(alpatrinacene 204-927.3 fi29-00-0 0.841 mg/kg 0.764 mg/kg 0.0000764 % ✓ 21 driversene fi20-923-4 pi18-01-9 0.826 mg/kg 0.667 mg/kg 0.0000767 % ✓ 22 beroz(alpyrene: beroz(delphrysene beroz			201-695-5 86-73-7									
IT anthracene D.154 mgkp D.0000154% ✓ IT anthracene D.05912-4 D206-912-4 D.06979 mgkp D.0713 mgkp D.0000713% ✓ It apprene D.05912-4 D206-44-0 D.879 mgkp D.764 mgkp D.0000764% ✓ It benzolganthracene Ed. 1.257 mgkp D.0764 mgkp D.0000764% ✓ It benzolganthracene Ed. 1.257 mgkp D.0677 mgkp D.0000764% ✓ It benzolganthracene Ed. D.253-28 D.826 mgkp D.000062% ✓ It benzolganthracene Ed. D.501 mgkp D.407 mgkp D.000062% ✓ It benzolganthracene Ed. D.501 mgkp D.407 mgkp D.000062% ✓ It benzolganthracene Ed. D.501 mgkp D.407 mgkp D.000062% ✓ It Benzolganthracene Ed. D.501 mgkp D.407	16	۲	201-581-5 85-01-8	_	0.49	mg/kg		0.398	mg/kg	0.0000398 %	\checkmark	
Image: Constraint of the product of the pro	17	8	anthracene		0.19	mg/kg		0.154	mg/kg	0.0000154 %	\checkmark	
18 Introduction model 205-912-4 206-44-0 0.879 mg/kg 0.713 mg/kg 0.0000713 % ✓ 19 Pyrene 204-927.3 129-00-0 0.941 mg/kg 0.764 mg/kg 0.0000764 % ✓ 20 benzo[a]anthracene 50-553 1.257 mg/kg 0.764 mg/kg 0.000078 % ✓ 21 chtysene 0.000285 50-528 0.816 mg/kg 0.667 mg/kg 0.000067 % ✓ 22 benzo[a]pyrene; benzo[def[chryene 50-528-8 0.816 mg/kg 0.662 mg/kg 0.000062 % ✓ 23 intene(123-cd]pyrene; benzo[def[chryene 50-532-8 0.501 mg/kg 0.407 mg/kg 0.000055 % ✓ 24 dibenz[a]hanthracene 50-532-8 193-39-5 0.501 mg/kg 0.407 mg/kg 0.000055 % ✓ 25 benzo[gh]uperylene 50-591-9 205-91-9 1.417 mg/kg 1.15 mg/kg 0.00015 % <			204-371-1 120-12-7									
public product public	18	۲	tiuorantnene		0.879	mg/kg		0.713	mg/kg	0.0000713 %	\checkmark	
19 ippenie 204-927.3 129-00-0 0.941 mg/kg 0.764 mg/kg 0.000764 % ✓ 20 benzolglanthracene job-200-280-6 j6-5-3 1.257 mg/kg 1.02 mg/kg 0.000067 % ✓ 21 chrysene job-200-280-5 j6-5-3 0.826 mg/kg 0.677 mg/kg 0.000067 % ✓ 22 benzolglpyrene: benzolglpyrene; job-282-8 job-282-8 0.816 mg/kg 0.662 mg/kg 0.000067 % ✓ 23 indeno[123-cd]pyrene; job-282-8 job-393-2 job-393-5 0.501 mg/kg 0.407 mg/kg 0.000047 % ✓ 24 dibenz(a)hjanthracene job-393-2 job-393-5 0.348 mg/kg 0.282 mg/kg 0.0000282 % ✓ 25 benzolghilperylene job-393-5 job-393-6 job-393-7 job-393-7 job-393-7 mg/kg 0.155 mg/kg 0.000115 % ✓ 26 benzolghilperylene job-395-7 jr1-43-2 e.0.01 mg/kg o.0.01 mg/kg <t< td=""><td>-</td><td></td><td>205-912-4 206-44-0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-		205-912-4 206-44-0									
Denzo[a]anthracene 601-033-00-9 portor porto	19	۲	204-927-3 129-00-0		0.941	mg/kg		0.764	mg/kg	0.0000764 %	\checkmark	
20 01-033-00-9 200-280-6 56-55-3 1.257 mg/kg 0.00102% ✓ 21 chrysene chrysene 0.000067% ✓ ✓ 22 benzo[a]pyrene; benzd[def[chrysene 0.826 mg/kg 0.662 mg/kg 0.0000662% ✓ 23 inden(123-cd]pyrene; benzd[def[chrysene 0.501 mg/kg 0.407 mg/kg 0.0000662% ✓ 24 dibenz[h]enthracene 0.501 mg/kg 0.407 mg/kg 0.0000662% ✓ 25 inden(123-cd]pyrene 200-181-8 53-70-3 0.581 mg/kg 0.282 mg/kg 0.0000282 % ✓ 26 benzo[h]flerylene 205-813-8 191-24-2 0.678 mg/kg 1.15 mg/kg 0.000015 % ✓ 27 benzo[h]fluoranthene 1.417 mg/kg 1.15 mg/kg 0.000115 % ✓ 28 benzo[h]fluoranthene <			benzolalanthracene									
21 chrysene 0.00067 % V 22 benzolajprene; benzoldef[knysene 0.826 mg/kg 0.667 mg/kg 0.000662 % V 23 indeno[123-cd]pyrene; benzoldef[knysene 0.00067 % V V V 24 indeno[123-cd]pyrene; benzoldef[knysene 0.00067 % V V V 24 indeno[123-cd]pyrene; benzoldef[knysene 0.000407 % V V V 25 benzolajprene; benzoldef[knysene 0.01 mg/kg 0.000055 % V V 26 benzolajbiliper/ene 0.678 mg/kg 0.55 mg/kg 0.000115 % V 27 benzolajbilioranthene 205-915-8 207-08-9 1.417 mg/kg 1.15 mg/kg 0.000115 % V 28 benzole 200-753-7 /71-43-2 -0.01 mg/kg -0.01 mg/kg 0.000115 % V 30 fö1-022-00-8 200-753-7 /71-43-2 -0.01 mg/kg -0.01 mg/kg -0.01 <td>20</td> <td></td> <td>601-033-00-9 200-280-6 56-55-3</td> <td>_</td> <td>1.257</td> <td>mg/kg</td> <td></td> <td>1.02</td> <td>mg/kg</td> <td>0.000102 %</td> <td>\checkmark</td> <td></td>	20		601-033-00-9 200-280-6 56-55-3	_	1.257	mg/kg		1.02	mg/kg	0.000102 %	\checkmark	
21 601-048-00-0 205-923-4 218-01-9 COULD mg/mg COULD mg/mg <thcod< th=""> COULD mg/mg COULD mg/mg<td>21</td><td></td><td>chrysene</td><td></td><td>0.826</td><td>ma/ka</td><td></td><td>0.67</td><td>ma/ka</td><td>0.00067.%</td><td>,</td><td></td></thcod<>	21		chrysene		0.826	ma/ka		0.67	ma/ka	0.00067.%	,	
22 berzo[alpyrene: berzo[del]chrysene 0.816 mg/kg 0.622 mg/kg 0.0000662 % v 23 indeno[123-cd]pyrene: 00-028-5 50-32-8 0.501 mg/kg 0.407 mg/kg 0.0000662 % v 24 diberz[a,h]anthracene 05-693-2 [133-39-5 0.501 mg/kg 0.407 mg/kg 0.0000407 % v 24 diberz[a,h]anthracene 05-693-2 [133-39-5 0.558 mg/kg 0.282 mg/kg 0.0000282 % v 25 berzo[b]fluoranthene [05-683-8 [191-24-2 0.678 mg/kg 0.555 mg/kg 0.000015 % v 26 berzo[b]fluoranthene [05-99-2 1.417 mg/kg 1.15 mg/kg 0.0000115 % v 27 berzo[k]fluoranthene [01-02-00-8 [20-753-7 [71-43-2 <0.01	21		601-048-00-0 205-923-4 218-01-9		0.820	шу/ку		0.07	шу/ку	0.000007 /8	V	
601-032-00-3 200-028-5 50-32-8 6000000000000000000000000000000000000	22		benzo[a]pyrene; benzo[def]chrysene		0.816	ma/ka		0 662	ma/ka	0 0000662 %	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			601-032-00-3 200-028-5 50-32-8		0.010						ř	
Image: Constraint of the	23	Θ	indeno[123-cd]pyrene		0.501	mg/kg		0.407	mg/kg	0.0000407 %	\checkmark	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			205-893-2 193-39-5								-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24		dibenz[a,h]anthracene		0.348	mg/kg		0.282	mg/kg	0.0000282 %	\checkmark	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-		601-041-00-2 200-181-8 63-70-3									
Image: constraint of the	25	Θ	benzolgnijperviene		0.678	mg/kg		0.55	mg/kg	0.000055 %	\checkmark	
26 Denzolk/filluonationationationationationationationati	-		benzo[b]fluorantbene									
27 benzo[k]fluoranthene 1.417 mg/kg 1.15 mg/kg 0.000115 % ✓ 28 benzo[k]fluoranthene 0.000115 % ✓	26		601-034-00-4 205-911-9 205-99-2	_	1.417	mg/kg		1.15	mg/kg	0.000115 %	\checkmark	
27 Production			benzo[k]fluoranthene									
28 benzene 601-020-00-8 200-753-7 [71-43-2] <0.01 mg/kg <0.01 mg/kg <0.00001 % < <lod< th=""> 29 toluene 601-021-00-3 203-625-9 [108-88-3] <0.01</lod<>	27		601-036-00-5 205-916-6 207-08-9		1.417	mg/kg		1.15	mg/kg	0.000115 %	\checkmark	
28 01-020-00-8 200-753-7 71-43-2 20.01 mg/kg 20.01 mg/kg 20.01 mg/kg 20.00001 % 2000001 % 2000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 20000001 % 200000001 % 200000001 % 200000001 % 200000001 % 20000000000000 2000000000000000000000000000000000000	0.0		benzene		0.01			0.04		0.000004.0/		1.00
29 toluene <0.01	20		601-020-00-8 200-753-7 71-43-2		<0.01	тід/кд		<0.01	тід/кд	<0.000001 %		<lod< td=""></lod<>
20 601-021-00-3 203-625-9 108-88-3 c0.01 mg/rg c0.01 mg/rg c0.00001 % c1.00 30 xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] c0.01 mg/rg c0.01 mg/rg c0.000001 % c1.00 30 203-396-5 [2] 106-42-3 [2] 106-42-3 [2] 106-42-3 [3] c0.01 mg/rg c0.01 mg/rg c0.000001 % c1.00 31 ethylbenzene c0.01 mg/rg c0.01 mg/rg c0.01 mg/rg c0.000001 % c1.00 32 pH ethylbenzene c0.01 pH 8.13 pH 8.13 pH 8.13 pH c1.00 33 TPH (C6 to C40) petroleum group 7.6 mg/rg c0.01 mg/rg c0.01 mg/rg c0.00001 % c1.00 34 tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane c0.01 mg/rg c0.01 mg/rg c0.01 mg/rg c0.001 % c1.00 35 phenol c0.01 mg/rg c0.01 mg/rg c0.01 mg/rg c0.000001 % c1.0	29		toluene		<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			601-021-00-3 203-625-9 108-88-3		30.01							200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			xylene									
31 •	30		601-022-00-9 202-422-2 [1] 95-47-6 [1]		<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
215-535-7 [4] 1330-20-7 [4]			203-396-5 [2] [106-42-3 [2] 203-576-3 [3] 108-38-3 [3]									
31 • ethylbenzene <0.01			215-535-7 [4] 1330-20-7 [4]									
601-023-00-4 202-849-4 100-41-4 100-41-4 100-41-4 100-41-4 32 PH 8.13 PH 8.13 PH 8.13 PH 33 TPH (C6 to C40) petroleum group 7.6 mg/kg 6.169 mg/kg 0.000617 % ✓ 34 tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane <0.01	31	8	ethylbenzene		< 0.01	ma/ka		< 0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
32 • PH • 8.13 pH 9H			601-023-00-4 202-849-4 100-41-4									
Image: PH	32	8	pH		8.13	pН		8.13	pН	8.13 pH		
33 ■ IPPI (C6 to C40) petroleum group 7.6 mg/kg 6.169 mg/kg 0.000617 % ✓ 34 ■ TPH TPH </td <td></td> <td></td> <td>PH</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			PH									
34 tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane <0.01 mg/kg <0.01 mg/kg <0.000001 % <lod< th=""> 35 phenol <0.01</lod<>	33	8	TPH (Co to C40) petroleum group		7.6	mg/kg		6.169	mg/kg	0.000617 %	\checkmark	
34 2-methoxy-2-methylpropane <0.01 mg/kg <0.010001 % <lod< th=""> 35 phenol <0.01</lod<>			tert-butyl methyl ether; MTBE;									
603-181-00-X 216-653-1 1634-04-4 35 phenol <0.01	34		2-methoxy-2-methylpropane		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
35 phenol <0.01 mg/kg <0.01 mg/kg <0.000001 % <lod< th=""></lod<>			603-181-00-X 216-653-1 1634-04-4									
	35		phenol		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
Total: 0.101 %	-		pu+-uu1-uu-z kuo-uo2-1 [100-90-2						Total	0.101 %	\vdash	

Key

0

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration <LOD Below limit of detection

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free draining liquid phase present, concentration very low.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00061%)

Classification of sample: BH6[1m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
BH6[1m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		15 mg/kg	1.32	17.222 mg/kg	0.00172 %	\checkmark	
2	4	cadmium {	1	1 mg/kg	1.285	1.118 mg/kg	0.000087 %	~	
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-0		42 mg/kg	1.252	45.717 mg/kg	0.00457 %	\checkmark	
4	*	chromium in chromium(III) compounds { Chromium(III) oxide }		15 mg/kg	1.462	19.064 mg/kg	0.00191 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) } 082-001-00-6	1	439 mg/kg		381.739 mg/kg	0.0382 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		18 mg/kg	1.579	24.723 mg/kg	0.00247 %	~	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		91 mg/kg	3.22	254.79 mg/kg	0.0255 %	\checkmark	
12		naphthalene 601-052-00-2 202-049-5 91-20-3		0.108 mg/kg		0.0939 mg/kg	0.00000939 %	\checkmark	
13	8	acenaphthylene 205-917-1 208-96-8		0.201 mg/kg		0.175 mg/kg	0.0000175 %	\checkmark	

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered da	ata	Conv. Factor	Compound cor	nc.	Classification value	AC Applied	Conc. Not Used
14	8	acenaphthene		0.079 m	na/ka		0.0687 n	na/ka	0.0000687 %	<	
14		201-469-6 83-32-9		0.075	ig/itg		0.0007	iig/itg	0.0000007 /8	×	
15		fluorene		0.118 m	na/ka		0.103 n	na/ka	0 0000103 %	1	
		201-695-5 86-73-7			ig/itg			ng/ng		Ň	
16	0	phenanthrene		1969 m	na/ka		1712 n	na/ka	0 000171 %	1	
		201-581-5 85-01-8			.9/9					ľ	
17		anthracene		0.699 m	na/ka		0.608 n	na/ka	0 0000608 %	\checkmark	
		204-371-1 120-12-7			.9/9					ľ	
18		fluoranthene		3 233 m	na/ka		2 811 n	ma/ka	0 000281 %	1	
		205-912-4 206-44-0		0.200	.9/9					ľ	
19		pyrene		2.372 m	na/ka		2.063 n	na/ka	0.000206 %	1	
		204-927-3 129-00-0			.99			.99		ľ	
20		benzo[a]anthracene		3.324 m	na/ka		2.89 n	na/ka	0.000289 %	1	
_		601-033-00-9 200-280-6 56-55-3			.99					ľ	
21		chrysene		1.387 m	na/ka		1.206 n	na/ka	0.000121 %	1	
- 1		601-048-00-0 205-923-4 218-01-9			.99					Ť	
22		benzo[a]pyrene; benzo[def]chrysene		1.366 m	na/ka		1 188 n	na/ka	0 000119 %	1	
		601-032-00-3 200-028-5 50-32-8			.99					ľ	
23	٥	indeno[123-cd]pyrene		0.781 m	na/ka	3	0.679 n	na/ka	0.0000679 %	1	
		205-893-2 193-39-5			.99					*	
24		dibenz[a,h]anthracene		0.455 m	na/ka		0.396 n	na/ka	0.0000396 %	1	
		601-041-00-2 200-181-8 53-70-3			.99					ľ	
25	٥	benzo[ghi]perylene		0.857 m	na/ka		0.745 n	na/ka	0.0000745 %	1	
		205-883-8 191-24-2			.99					ľ	
26		benzo[b]fluoranthene		1.963 m	na/ka		1.707 n	na/ka	0.000171 %	1	
		601-034-00-4 205-911-9 205-99-2			5 5			5. 5		ľ	
27		benzo[k]fluoranthene		1.963 m	na/ka		1.707 n	na/ka	0.000171 %	1	
		601-036-00-5 205-916-6 207-08-9			5 5			5. 5		ľ	
28	0	рН		8.45 pl	н		8.45 p	н	8.45 pH		
		PH									
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5 m	ng/kg	1.884	<4.71 n	ng/kg	<0.000471 %		<lod< th=""></lod<>
								Total:	0.077 %	\square	

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

Classification of sample: BH6[2m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
BH6[2m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
27.2%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 27.2% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tric	oxide }	1227 52 2		27	mg/kg	1.32	28.026	mg/kg	0.0028 %	~	
2	4	cadmium { cadmium	n sulfide }	1206 22 6	1	1	mg/kg	1.285	1.01	mg/kg	0.0000786 %	\checkmark	
3	4	copper { copper(II) c	<pre>oxide } 215 260 1</pre>	1317 38 0		99	mg/kg	1.252	97.426	mg/kg	0.00974 %	\checkmark	
4	4	chromium in chromi oxide }	ium(III) compounds	{ • chromium(III)		20	mg/kg	1.462	22.98	mg/kg	0.0023 %	~	
5	4	chromium in chromi oxide } 024-001-00-0	ium(VI) compounds 215-607-8	1333-82-0		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead composite composit	ounds with the exce in this Annex (wor	eption of those st case) }	1	1187	mg/kg		933.176	mg/kg	0.0933 %	~	
7	4	mercury { mercury c	dichloride }	7487-94-7		5	mg/kg	1.353	5.32	mg/kg	0.000532 %	\checkmark	
8	4	nickel { nickel dihydi 028-008-00-X	roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		35	mg/kg	1.579	43.461	mg/kg	0.00435 %	~	
9	4	selenium { selenium cadmium sulphosele in this Annex }	n compounds with the enide and those sp	he exception of ecified elsewhere		<0.5	mg/kg	2.554	<1.277	mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	215-222-5	1314-13-2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron triox	<pre>kide; boric oxide } 215-125-8</pre>	1303-86-2		139	mg/kg	3.22	351.858	mg/kg	0.0352 %	~	
12		naphthalene 601-052-00-2	202-049-5	91-20-3		5.377	mg/kg		4.227	mg/kg	0.000423 %	\checkmark	
13	0	acenaphthylene	205-917-1	208-96-8		2.351	mg/kg		1.848	mg/kg	0.000185 %	\checkmark	

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered d	lata	Conv. Factor	Compound cor	nc.	Classification value	AC Applied	Conc. Not Used
14		acenaphthene		0.994 m	na/ka		0.781 n	na/ka	0 0000781 %	2	
14		201-469-6 83-32-9	_	0.554	пу/ку		0.761	пу/ку	0.0000781 /8	~	
15		fluorene		3 3 8 n	na/ka		2.657 n	na/ka	0 000266 %	1	
10		201-695-5 86-73-7		0.00	iig/itg		2.007	iig/itg	0.000200 /0	~	
16		phenanthrene		27.765 n	na/ka		21.828 n	na/ka	0.00218 %	1	
		201-581-5 85-01-8								~	
17	٥	anthracene		10.691 n	na/ka		8.405 n	na/ka	0.00084 %	1	
		204-371-1 120-12-7				<u> </u>		0.00004 /0	ľ		
18	۰	fluoranthene		34.308 n	mg/kg		26.972 n	ng/kg	0.0027 %	1	
		205-912-4 206-44-0									
19	0	pyrene		28.495 n	mg/kg		22.402 n	mg/kg	0.00224 %	\checkmark	
		204-927-3 129-00-0									
20		benzo[a]anthracene		21.106 n	ng/kg		16.593 n	ng/kg	0.00166 %	\checkmark	
		601-033-00-9 200-280-6 56-55-3									
21		chrysene		16.33 n	ng/kg		12.838 n	ng/kg	0.00128 %	\checkmark	
		601-048-00-0 <u>205-923-4</u> <u>218-01-9</u>	-								
22		benzo[a]pyrene; benzo[def]chrysene	_	16.122 n	ng/kg		12.675 n	ng/kg	0.00127 %	\checkmark	
		601-032-00-3 200-028-5 50-32-8	_								
23	۲	indeno[123-cd]pyrene	_	10.079 n	ng/kg		7.924 n	ng/kg	0.000792 %	\checkmark	
		205-893-2 193-39-5	_								
24		dibenz[a,h]anthracene		10.344 n	ng/kg		8.132 n	ng/kg	0.000813 %	\checkmark	
		601-041-00-2 200-181-8 53-70-3									
25	۲	benzo[ghi]perylene		10.027 n	ng/kg		7.883 n	ng/kg	0.000788 %	\checkmark	
		205-883-8 191-24-2									
26			_	28.064 n	ng/kg		22.063 n	ng/kg	0.00221 %	\checkmark	
		001-034-00-4 203-911-9 203-99-2									
27			_	28.064 n	ng/kg		22.063 n	ng/kg	0.00221 %	\checkmark	
		nH	+								
28		РН	-	8.38 p	ъН		8.38 p	ъH	8.38 pH		
29	4	cyanides { a salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2.5 n	ng/kg	1.884	<4.71 n	ng/kg	<0.000471 %		<lod< th=""></lod<>
								Total:	0.169 %		

...

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

Classification of sample: BH7[0.5m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: BH7[0.5m] Sample Depth:	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.5 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
3.9% (dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 3.9% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS N	lumber	CLP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	3		27	mg/kg	1.32	34.311	mg/kg	0.00343 %	~	
2	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-1	6	1	<1	mg/kg	1.285	<1.285	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	copper { copper(II) oxide } 029-016-00-6 215-269-1 1317-38-1	0		29	mg/kg	1.252	34.939	mg/kg	0.00349 %	\checkmark	
4	4	chromium in chromium(III) compounds { chronoxide }	<mark>mium(III)</mark> 9		23	mg/kg	1.462	32.354	mg/kg	0.00324 %	~	
5	4	chromium in chromium(VI) compounds { chromiu oxide } 024-001-00-0 215-607-8 1333-82-	um(VI)		<0.1	mg/kg	1.923	<0.192	mg/kg	<0.0000192 %		<lod< td=""></lod<>
6	4	lead { lead compounds with the exception of t specified elsewhere in this Annex (worst case) }	hose	1	183	mg/kg		176.131	mg/kg	0.0176 %	~	
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-	7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48 234-348-1 [2] 11113-74	8-7 [1] I-9 [2]		16	mg/kg	1.579	24.323	mg/kg	0.00243 %	~	
9	\$	selenium { selenium compounds with the except cadmium sulphoselenide and those specified els in this Annex }	ion of sewhere		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide }	2		<1	mg/kg	1.245	<1.245	mg/kg	<0.000124 %		<lod< td=""></lod<>
11	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-7	2		118	mg/kg	3.22	365.684	mg/kg	0.0366 %	~	
12		naphthalene 601-052-00-2 202-049-5 91-20-3			0.002	mg/kg		0.0019	mg/kg	0.000000192 %	\checkmark	
13	0	acenaphthylene 205-917-1 208-96-8			0.004	mg/kg		0.0038	mg/kg	0.00000385 %	\checkmark	

#		Determinand	Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP					MC	
14	۲	acenaphthene		0.016 mg/kg	3	0.0154 mg/kg	0.00000154 %	\checkmark	
		201-469-6 83-32-9	-						
15	۲	fluorene		0.001 mg/kg	9	0.0009 mg/kg	0.000000096 %	\checkmark	
		201-695-5 86-73-7	-						
16	•	b01-581-5 85-01-8		0.005 mg/kg	9	0.0048 mg/kg	0.000000481 %	\checkmark	
	_	anthracene							
17		204-371-1 120-12-7	-	0.002 mg/kg	3	0.0019 mg/kg	0.000000192 %	\checkmark	
		fluoranthene							
18		205-912-4 206-44-0	-	0.078 mg/kợ	3	0.0751 mg/kg	0.00000751 %	\checkmark	
10		pyrene		0.152 mg/kg		0.147 ma/ka	0.0000147.9/	,	
19		204-927-3 129-00-0	-	0.155 mg/kų	9	0.147 Hig/kg	0.0000147 %	V	
20		benzo[a]anthracene		0.08 ma/ka	1	0.077 ma/ka	0 0000077 %	./	
		601-033-00-9 200-280-6 56-55-3			2			Ŷ	
21		chrysene		0.061 mg/kg	1	0.0587 mg/kg	0.00000587 %	1	
		601-048-00-0 205-923-4 218-01-9						-	
22		benzo[a]pyrene; benzo[def]chrysene	_	0.047 mg/kg	3	0.0452 mg/kg	0.00000452 %	\checkmark	
		601-032-00-3 <u>200-028-5</u> <u>50-32-8</u>	_						
23	۲	indeno[123-cd]pyrene	_	0.058 mg/kg	3	0.0558 mg/kg	0.00000558 %	\checkmark	
		dihenzla hlanthracene						\vdash	
24			_	0.021 mg/kg		0.0202 mg/kg	0.00000202 %	\checkmark	
		601-041-00-2 200-181-8 p3-70-3						\vdash	
25		205-883-8 191-24-2	-	0.062 mg/kg	9	0.0597 mg/kg	0.00000597 %	\checkmark	
-		benzo[b]fluoranthene							
26		601-034-00-4 205-911-9 205-99-2	-	0.085 mg/kg	3	0.0818 mg/kg	0.00000818 %	\checkmark	
07		benzo[k]fluoranthene		0.005		0.0040	0.00000040.0/		
21		601-036-00-5 205-916-6 207-08-9		0.065 mg/kg	3	0.0818 mg/kg	0.00000818 %	V	
28		рН		9.21 pH		9.21 nH	9 21 nH		
20		PH		3.21 pH		3.21 pm	5.21 pm		
29	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
-	-	phenol	-						
30		604-001-00-2 203-632-7 108-95-2	-	<0.01 mg/kg	J	<0.01 mg/kg	<0.000001 %		<lod< th=""></lod<>
						Total:	0.0677 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: BH7[3m]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	

Sample details

Sample Name: BH7[3m]	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17.8%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 17.8% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered dat	a	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
1		benzene	000 750 7	74 40 0		<0.01 mg	kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
		601-020-00-8	200-753-7	/1-43-2								-	
2		toluene				<0.01 ma	ka		<0.01	ma/ka	<0.000001 %		<lod< th=""></lod<>
-		601-021-00-3	203-625-9	108-88-3	1								
3		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01 mg	kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
4	0	ethylbenzene		I		<0.01 mg	kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
5	8	TPH (C6 to C40) petroleum group			<0.1 mg	kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>	
				IIPH								L	
6		tert-butyl methyl eth 2-methoxy-2-methy 603-181-00-X	her; MTBE; /lpropane 216-653-1	1634-04-4		<0.01 mg	kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
			1	1		I				Total:	0.00001 %	Ì	1

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) <LOD Below limit of detection

Classification of sample: BH7[6.5m]

Sample details

Sample Name:	LoW Code:	
BH7[6.5m]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
6.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
7.8%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 7.8% Dry Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number	CAS Number	:LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	1C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	007.50.0	с I	8 mg/kg	1.32	9.798 mg/kg	0.00098 %	≥	
		033-003-00-0 215-481-4 1	327-53-3							
2	44	cadmium { cadmium suifide }	206.22.6	1	1 mg/kg	1.285	1.192 mg/kg	0.0000928 %	\checkmark	
<u> </u>		conner { conner(II) oxide }	300-23-0						\vdash	
3	**	029-016-00-6 215-269-1 1	317-38-0		18 mg/kg	1.252	20.902 mg/kg	0.00209 %	\checkmark	
4	4	chromium in chromium(III) compounds { oxide }	 chromium(III) 208, 28, 0 		17 mg/kg	1.462	23.049 mg/kg	0.0023 %	~	
5	4	chromium in chromium(VI) compounds { oxide } 244.001-00-0 245-607-8 1	(chromium(VI)		<0.1 mg/kg	1.923	<0.192 mg/kg	<0.0000192 %		<lod< th=""></lod<>
6	~	lead { lead compounds with the except specified elsewhere in this Annex (worst 082-001-00-6	ption of those t case) }	1	22 mg/kg		20.408 mg/kg	0.00204 %	~	
-	æ	mercury { mercury dichloride }				4.050	4.050 #	0.000405.0/		1.00
· /		080-010-00-X 231-299-8 7	487-94-7		<1 тд/кд	1.353	<1.353 mg/кg	<0.000135 %		<lod< td=""></lod<>
	æ	nickel { <mark>nickel dihydroxide</mark> }						·		
8		028-008-00-X 235-008-5 [1] 1 234-348-1 [2] 1	2054-48-7 [1] 1113-74-9 [2]		28 mg/kg	1.579	41.026 mg/kg	0.0041 %	~	
9	~	selenium { selenium compounds with the cadmium sulphoselenide and those spe in this Annex }	e exception of cified elsewhere		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
	æ	zinc { zinc oxide }								
10	~	030-013-00-7 215-222-5 1	314-13-2		<1 mg/kg	1.245	<1.245 mg/kg	<0.000124 %		<lod< th=""></lod<>
11	æ	boron { diboron trioxide; boric oxide }			72 ma/ka	2 22	215.057 mg/kg	0.0215.9/	,	
		005-008-00-8 215-125-8 1	303-86-2		72 mg/kg	3.22	215.057 Hig/kg	0.0215 %	~	
12		naphthalene					<1 ma/ka	<0.0001 %		<lod< th=""></lod<>
		601-052-00-2 202-049-5 9	1-20-3							
13	۲	acenaphthylene	08-96-8		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< th=""></lod<>
L										

#			Determinand	CAC Number	P Note	User entere	d data	Conv. Factor	Compound c	onc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CL							δ	
14	Θ	acenaphthene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			201-469-6	83-32-9	-								
15	8	fluorene	201 005 5	00 70 7		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	_	nhenanthrene	201-695-5	00-73-7	+								
16	۲	phenantinene	201-581-5	85-01-8		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		anthracene			+								
11			204-371-1	120-12-7	1	<1	mg/кg		<1	mg/кg	<0.0001 %		<lod< td=""></lod<>
18	8	fluoranthene				-1	ma/ka		<1	ma/ka	<0.0001 %		
			205-912-4	206-44-0			ing/ng						200
19	Θ	pyrene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			204-927-3	129-00-0	-								
20		benzo[a]anthracen		50.55.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	+								
21		601-048-00-0	205-023-4	218-01-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		benzo[a]pyrene: be	nzoldeflchrvsene	210013	+								
22		601-032-00-3	200-028-5	50-32-8		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
22		indeno[123-cd]pyre	ene	1		.1			-1		-0.0001.0/		
23			205-893-2	193-39-5		<1	тід/кд		<1	ту/ку	<0.0001 %		<lud< td=""></lud<>
24		dibenz[a,h]anthrac	ene			-1	ma/ka		<1	ma/ka	<0.0001 %		
<u> </u>		601-041-00-2	200-181-8	53-70-3			ing/ng						200
25	Θ	benzo[ghi]perylene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			205-883-8	191-24-2	-								
26	Θ	coronene	005 004 7	404 07 4		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
_		bonzo[b]fluorantho	205-881-7	191-07-1	-								
27		601-034-00-4	205-911-9	205-99-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe	ne	200 00 2	+								
28		601-036-00-5	205-916-6	207-08-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
20		benzene				-0.01			-0.01		-0.000001.0/		
29		601-020-00-8	200-753-7	71-43-2		<0.01	тту/ку		<0.01	шу/ку	<0.000001 %		<lod< td=""></lod<>
30		toluene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
		601-021-00-3	203-625-9	108-88-3	1_		ing/ng			iiig/itg			~200
		xylene											
31		601-022-00-9	202-422-2 [1]	95-47-6 [1]		<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3]			5.5			5 5			
			215-535-7 [4]	1330-20-7 [4]									
32	Θ	ethylbenzene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	-								
33	8	polychlorobiphenyl	S; PCB	4000 00 0		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		602-039-00-4	215-648-1	1336-36-3	+								
34	8	pri		РН		8.67	рН		8.67	pН	8.67 pH		
	æ		<u> </u>										
	~	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides											
35		ferricyanides and mercuric oxycyanide and those			<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>	
		specified elsewhere	e in this Annex }	1									
-		phopol			+							\square	
36		604-001-00-2	203-632-7	108-95-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	L	0010012						1		Total:	0.0355 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Report created by Iain Williams on 16 Nov 2018

Appendix A: Classifier defined and non CLP determinands

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Repr. 1B H360FD , Skin Sens. 1 H317 , Resp. Sens. 1 H334 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Acute Tox. 4 H302 , Acute Tox. 4 H332

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 1; Carcinogenic to humans; Lead REACH Consortium considers some lead compounds Carcinogenic category 1A

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

• acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 2 H411, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319

[®] fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

^o pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

Report created by Iain Williams on 16 Nov 2018

^a indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

• coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic. Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2 H371

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

^o polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Hazard Statement(s): EUH032 >= 0.2 %

Reason for additional Hazards Statement(s)/Risk Phrase(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304, Flam. Liq. 3 H226

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Worst case species based on Hazard Statement.

Report created by Iain Williams on 16 Nov 2018

cadmium {cadmium sulfide}
Worst case species based on Hazard Statements.
copper {copper(II) oxide}
Reasonable
chromium in chromium(III) compounds {chromium(III) oxide}
oxide conversion factor included
chromium in chromium(VI) compounds {chromium(VI) oxide}
most conservative
lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}
Hexavalent Chromium not detected above Limit of detection, Chromium present as Chromium 3+
mercury {mercury dichloride}
Worst case species based on Hazard Statements.
nickel {nickel dihydroxide}
Worst case species based on Hazard Statements.
selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}
Worst case species based on Hazard Statements.
zinc {zinc oxide}
Concentrations of chromium VI insufficient for zinc chormate to be present.
boron {diboron trioxide; boric oxide}
Reasonable
cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2018.306.3704.7580 (03 Nov 2018) HazWasteOnline Database: 2018.306.3704.7580 (03 Nov 2018)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Multidisciplinary Consulting Engineers

> 9 Prussia Street Dublin 7 Ireland

T | +353 (0)1 8682000 F | +353 (0)1 8682100 W | www.ocsc.ie